LeetCode 11
Container With Most Water
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).
n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0).
Find two lines, which together with x-axis forms a container,
such that the container contains the most water.
Note: You may not slant the container.
/*************************************************************************
> File Name: LeetCode011.c
> Author: Juntaran
> Mail: Jacinthmail@gmail.com
> Created Time: Wed 27 Apr 2016 02:11:36 AM CST
************************************************************************/ /************************************************************************* Container With Most Water Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water. Note: You may not slant the container. ************************************************************************/ #include <stdio.h> int maxArea(int* height, int heightSize) { int left = ;
int right = heightSize - ;
int max = ; while( left < right ){ int water = ( right - left ) * ( height[left] < height[right] ? height[left++] : height[right--] );
max = max > water ? max : water;
printf("Each water is %d\n", water);
}
printf("Max water is %d\n", max);
return max; } int main()
{
int heights[] = {, , , , , , , };
int size = ; maxArea( heights, size ); return ;
}
LeetCode 11的更多相关文章
- LeetCode 11. Container With Most Water (装最多水的容器)
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). ...
- [LeetCode] 11. Container With Most Water 装最多水的容器
Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). ...
- LeetCode 11 水池蓄水问题
今天给大家分享的是一道LeetCode中等难度的题,难度不大,但是解法蛮有意思.我们一起来看题目: Link Container With Most Water Difficulty Medium 题 ...
- Java实现 LeetCode 11 盛最多水的容器
11. 盛最多水的容器 给定 n 个非负整数 a1,a2,-,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) ...
- 如何装最多的水? — leetcode 11. Container With Most Water
炎炎夏日,还是呆在空调房里切切题吧. Container With Most Water,题意其实有点噱头,简化下就是,给一个数组,恩,就叫 height 吧,从中任选两项 i 和 j(i <= ...
- LeetCode——11. Container With Most Water
一.题目链接:https://leetcode.com/problems/container-with-most-water/ 二.题目大意: 给定n个非负整数a1,a2....an:其中每一个整数对 ...
- LeetCode 11 Container With Most Water(分支判断问题)
题目链接 https://leetcode.com/problems/container-with-most-water/?tab=Description Problem: 已知n条垂直于x轴的线 ...
- LeetCode(11)题解: Container With Most Water
https://leetcode.com/problems/container-with-most-water/ 题目: Given n non-negative integers a1, a2, . ...
- leetcode 11. Container With Most Water 、42. Trapping Rain Water 、238. Product of Array Except Self 、407. Trapping Rain Water II
11. Container With Most Water https://www.cnblogs.com/grandyang/p/4455109.html 用双指针向中间滑动,较小的高度就作为当前情 ...
随机推荐
- 现代程序设计 homework-09
现代程序设计 homework-09 这次作业是要求将homework-02做成一个可演示的应用,目的是为了让用户看到程序的计算步骤以及中间结果. 借此机会也学了一下JavaScript,感觉总结的地 ...
- Spring AOP + AspectJ in XML configuration example
For those don't like annotation or using JDK 1.4, you can use AspectJ in XML based instead. Review l ...
- Beginning OpenGL ES 2.0 with GLKit Part 1
Update 10/24/12: If you’d like a new version of this tutorial fully updated for iOS 6 and Xcode 4.5, ...
- jinfo用法
jinfo(Configuration Info for Java)的作用是实时地查看和调整虚拟机各项参数.使用jps命令的-v参数可以查看虚拟机启动时显式指定的参数列表,但如果想知道未被显式指定的参 ...
- Linux优化之IO子系统监控与调优
Linux优化之IO子系统 作为服务器主机来讲,最大的两个IO类型 : 1.磁盘IO 2.网络IO 这是我们调整最多的两个部分所在 磁盘IO是如何实现的 在内存调优中,一直在讲到为了加速性能,linu ...
- rop框架签名功能控制
平台级控制: 通过<rop:annotation-driven/>的 sign-enable 属性即可开启或关闭服务平台签名验证功能:<rop:annotation-driven s ...
- js获取服务端IP及端口及协议
alert("location:"+window.location); alert("href: "+window.location.href); alert( ...
- java tools: jstat
JavaScript is not supported by your browser. JavaScript support is required for full functionality o ...
- JMS开发(二):深入PTP,Pub-Sub两种模式
1.PTP模型 PTP(Point-to-Point)模型是基于队列(Queue)的,对于PTP消息模型而言,它的消息目的是一个消息队列(Queue),消息生产者每次发送消息总是把消息送入消息队列中, ...
- IOS开发--数据持久化篇文件存储(二)
前言:个人觉得开发人员最大的悲哀莫过于懂得使用却不明白其中的原理.在代码之前我觉得还是有必要简单阐述下相关的一些知识点. 因为文章或深或浅总有适合的人群.若有朋友发现了其中不正确的观点还望多多指出,不 ...