除了分解质因数,还有另一种适用于求几个较小数的最大公约数、最小公倍数的方法

下面是数学证明及算法实现

令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数。对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算。但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积。例如:[2,3,4]并不等于24/(2,3,4)。即两个数的最大公约数和最小公倍数之间的关系不能简单扩展为n个数的情况。

本文对多个数最小公倍数和多个数最大公约数之间的关系进行了探讨。将两个数最大公约数和最小公倍数之间的关系扩展到n个数的情况。在此基础上,利用求n个数最大公约数的向量变换算法计算多个数的最小公倍数。

1.  多个数最小公倍数和多个数最大公约数之间的关系

令p为a1,a2,..,an中一个或多个数的素因子,a1,a2,..,an关于p的次数分别为r1,r2,..,rn,在r1,r2,..,rn中最大值为rc1=rc2=..=rcm=rmax,最小值为rd1=rd2=..=rdt=rmin,即r1,r2,..,rn中有m个数所含p的次数为最大值,有t个数所含p的次数为最小值。例如:4,12,16中关于素因子2的次数分别为2,2,4,有1个数所含2的次数为最大值,有2个数所含2的次数为最小值;关于素因子3的次数分别为0,1,0,有1个数所含3的次数为最大值,有2个数所含3的次数为最小值。

对最大公约数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最低次数,最低次数为0表示不包含[1]。

对最小公倍数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最高次数[1]。

定理1:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。

例如:对于4,6,8,10,有[4,6,8,10]=120,而M=4*6*8*10=1920,M/(M/a1,M/a2,..,M/an) =1920/(6*8*10,4*8*10,4*6*10,4*6*8)=1920/16=120。

证明:

M/a1,M/a2,..,M/an中p的次数都大于等于r1+r2+..+rn-rmax,且有p的次数等于r1+r2+..+rn-rmax的。这是因为

(1)       M/ai中p的次数为r1+r2+..+rn-ri,因而M/a1,M/a2,..,M/an中p的次数最小为r1+r2+..+rn-rmax。

(2)       对于a1,a2,..,an中p的次数最大的项aj(1项或多项),M/aj中p的次数为r1+r2+..+rn-rmax。

或者对于a1,a2,..,an中p的次数最大的项aj,M/aj中p的次数小于等于M/ak,其中ak为a1,a2,..,an中除aj外其他的n-1个项之一,而M/aj中p的次数为r1+r2+..+rn-rmax。

因此,(M/a1,M/a2,..,M/an)中p的次数为r1+r2+..+rn-rmax,从而M/(M/a1,M/a2,..,M/an)中p的次数为rmax。

上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。

得证。

定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。

2.多个数最大公约数的算法实现

根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即

(1)       用辗转相除法[2]计算a1和a2的最大公约数(a1,a2)

(2)       用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3)

(3)       用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4)

(4)       依此重复,直到求得(a1,a2,..,an)

上述方法需要n-1次辗转相除运算。

本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。

定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。

例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。

证明:

根据最大公约数的交换律和结合率,有

(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者

(a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。

而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有

(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者

(a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。

因此只需证明(ai,aj)=( ai, aj-ai)即可。

由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。

得证。

定理2类似于矩阵的初等变换,即

令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。

求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为:

(1)       找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个

(2)       aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4)

(3)       转到(1)

(4)       a1,a2,..,an的最大公约数为aj

例如:对于5个数34, 56, 78, 24, 85,有

(34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1,

对于6个数12, 24, 30, 32, 36, 42,有

(12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。

3. 多个数最小公倍数的算法实现

求多个数最小公倍数的算法为:

(1)       计算m=a1*a2*..*an

(2)       把a1,a2,..,an中的所有项ai用m/ai代换

(3)       找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个

(4)       aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6)

(5)       转到(3)

(6)       最小公倍数为m/aj

上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。不过m要注意溢出的问题。

5.结论

计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。

求N个数的最大公约数和最小公倍数(转)的更多相关文章

  1. python 函数求两个数的最大公约数和最小公倍数

    1. 求最小公倍数的算法: 最小公倍数  =  两个整数的乘积 /  最大公约数 所以我们首先要求出两个整数的最大公约数, 求两个数的最大公约数思路如下: 2. 求最大公约数算法: 1. 整数A对整数 ...

  2. C++中用辗转相除法求两个数的最大公约数和最小公倍数

    两个数的最大公约数:不能大于两个数中的最小值,算法口诀:小的给大的,余数给小的,整除返回小的,即最大公约数,(res=max%min)==0?  max=min,min=res return min; ...

  3. C#趣味程序---求两个数的最大公约数和最小公倍数

    using System; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { Cons ...

  4. 求两个数的最大公约数和最小公倍数Java(cvte考题)

    //最大公约数 最小公倍数 通过测试 public class GongYue{ public static int gongyue(int m, int n) throws Exception{ i ...

  5. .net求两个数的最大公约数和最小公倍数

    最大公约数:指两个或多个整数共有约束中最大的一个. 最小公倍数:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个. /// <s ...

  6. C语言辗转相除法求2个数的最小公约数

    辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例 ...

  7. c语言实践:求两个数的最大公约数

    我的思路是这样的:比如12和16这两个数.先理解一下概念,什么叫最大公约数.就是12有很多个因数,16也有很多个因数,这两堆因数中有一些重合的因数,在这些重合的因数中找到那个最大的.那么最大公约数一定 ...

  8. C++扬帆远航——14(求两个数的最大公约数)

    /* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:gongyueshu.cpp * 作者:常轩 * 微信公众号:W ...

  9. 求两个数的最大公约数&求N个数的最大公约数

    一.求两个数的最大公约数 如何编程计算N个数的最大公约数(Greatest common divisor)呢?第一想法那便是两两计算,但是往往最简单的想法是不怎么靠谱的.下面用递归来解决.递归有一大好 ...

随机推荐

  1. PowerDesigner通过SQL语句生成PDM文件

    前提: 我用的是PowerDesigner15 数据库为Mysql5.5 步骤如下: 第一步:File->New Model 点击OK创建模板就行了 备注:在创建物理模型时DBMS下拉框是空的, ...

  2. IOS-UIDynamic

    UIDynamic中的三个重要概念 Dynamic Animator:动画者,为动力学元素提供物理学相关的能力及动画,同时为这些元素提供相关的上下文,是动力学元素与底层iOS物理引擎之间的中介,将Be ...

  3. 使用JHChart勾勒你想要的图表

    前言 从2016年4月14日开始,本人着手开发了JHChart图表工具库.经过断断续续的开发,截止到现在,已经实现了折线图.柱状图.饼状图.环形图和表格样式的图表功能.为了方便使用,我已经将一个简单的 ...

  4. Redis的Python实践,以及四中常用应用场景详解——学习董伟明老师的《Python Web开发实践》

    首先,简单介绍:Redis是一个基于内存的键值对存储系统,常用作数据库.缓存和消息代理. 支持:字符串,字典,列表,集合,有序集合,位图(bitmaps),地理位置,HyperLogLog等多种数据结 ...

  5. 关于 android 的setOnItemClickListener 和 setOnItemLongClickListener 同时触发的解决方法

    关于 android 的setOnItemClickListener 和 setOnItemLongClickListener 同时触发的解决方法. 其实方法也是很简单 的主要 setOnItemLo ...

  6. PHP之session与cookie

    1.session与cookie的关系 众所周知,session是存储在服务器端,cookie是存储在客户端,如果禁用了浏览器的cookie功能,很多时候(除非进行了特殊配置)服务器端就无法再读取se ...

  7. JSONArray的应用

    从json数组中得到相应java数组,如果要获取java数组中的元素,只需要遍历该数组. /** * 从json数组中得到相应java数组 * JSONArray下的toArray()方法的使用 * ...

  8. 【Java远程debug】

    转自 http://blog.csdn.net/hongchangfirst/article/details/44191925 一.远程debug原理 Java远程调试的原理是两个JVM之间通过deb ...

  9. SQL Server 事务以及事务日志综述

    事务是一个非常重要的概念,特此在这里写一些文章来总结.整篇文章还在持续更新中. 在本系列文章中,你将看到以下内容: 数据库事务(Database Transaction)概述 事务操作(BEGIN/C ...

  10. 听大神说:https和http有何区别?(转)

    在做雅虎的时候,发现用第三方工具截取不到客户端与服务端的通讯,以前重来没碰到过这种情况,仔细看了看,它的url请求时基于https的,gg了下发现原来https协议和http有着很大的区别.总的来说, ...