二分查找

二分查找又称折半查找

优点是比较次数少,查找速度快,平均性能好

缺点是要求待查表为有序表,且插入删除困难

折半查找方法适用于不经常变动而查找频繁的有序列表。  

猜数字游戏

1、生成一个有序列表

2、用户猜测某个数字是否在列表中  

代码:

#!/usr/bin/env python
# -*- conding-utf8 -*- def binary_search(data_source, find_n):
mid = int(len(data_source)/2)
if mid >= 1:
if data_source[mid] > find_n: # data in left
print("data in left of [%s]" % data_source[mid])
print(data_source[:mid])
binary_search(data_source[:mid], find_n)
elif data_source[mid] < find_n: # data in right
print("data in right of [%s]" % data_source[mid])
print(data_source[mid:])
binary_search(data_source[mid:], find_n)
elif data_source[mid] == find_n:
print("found %s" % data_source[mid])
elif data_source[mid] == find_n:
print("found %s" % data_source[mid])
else:
print("not found") if __name__ == '__main__':
data = list(range(1,100,3))
ret = input("请输入猜测的数字:")
binary_search(data, int(ret))  

运行结果:

请输入猜测的数字:50
data in right of [49]
[49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97]
data in left of [73]
[49, 52, 55, 58, 61, 64, 67, 70]
data in left of [61]
[49, 52, 55, 58]
data in left of [55]
[49, 52]
data in left of [52]
[49]
not found 请输入猜测的数字:1
data in left of [49]
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46]
data in left of [25]
[1, 4, 7, 10, 13, 16, 19, 22]
data in left of [13]
[1, 4, 7, 10]
data in left of [7]
[1, 4]
data in left of [4]
[1]
found 1  

时间复杂度

  • 时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n) 。
  • 时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时, T(n)/f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O(f(n)) ,称 O(f(n))为算法的渐进时间复杂度,简称时间复杂度。
 

指数时间

  • 指的是一个问题求解所需要的计算时间m(n),依输入数据的大小而呈指数成长(即输入数据的数量依线性成长,所花的时间将会以指数成长)
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
x++;  
  • 第一个for循环的时间复杂度为 Ο(n) ,第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)

常数时间

  • 若对于一个算法, T(n) 的上界与输入大小无关,则称其具有常数时间,记作 O(1) 时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称 O(n) 时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

对数时间

  • 若算法的T(n) = O(log n),则称其具有对数时间
  • 常见的具有对数时间的算法有二叉树的相关操作和二分搜索
  • 对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。
  • 递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

 

线性时间

  • 如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

Python 算法之二分查找的更多相关文章

  1. python算法之二分查找

    说明:大部分代码是在网上找到的,好几个代码思路总结出来的 通常写算法,习惯用C语言写,显得思路清晰.可是假设一旦把思路确定下来,并且又不想打草稿.想高速写下来看看效果,还是python写的比較快.也看 ...

  2. Python算法之二分查找法

    1: l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88] 从列表中找到某个num的位置 def ...

  3. 【算法】二分查找法&大O表示法

    二分查找 基本概念 二分查找是一种算法,其输入是一个有序的元素列表.如果要查找的元素包含在列表中,二分查找返回其位置:否则返回null. 使用二分查找时,每次都排除一半的数字 对于包含n个元素的列表, ...

  4. javascript数据结构与算法---检索算法(二分查找法、计算重复次数)

    javascript数据结构与算法---检索算法(二分查找法.计算重复次数) /*只需要查找元素是否存在数组,可以先将数组排序,再使用二分查找法*/ function qSort(arr){ if ( ...

  5. 分治算法(二分查找)、STL函数库的应用第五弹——二分函数

    分治算法:二分查找!昨天刚说不写算法了,但是突然想起来没写过分治算法的博客,所以强迫症的我…… STL函数库第五弹——二分函数lower_bound().upper_bound().binary_se ...

  6. Python——递归、二分查找算法

    递归函数 1. 递归 (1)什么是递归:在函数中调用自身函数(2)最大递归深度:默认997/998——是Python从内存角度出发做的限制 n = 0 def story(): global n n+ ...

  7. Python递归函数和二分查找算法

    递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属 ...

  8. python之路——二分查找算法

    楔子 如果有这样一个列表,让你从这个列表中找到66的位置,你要怎么做? l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72 ...

  9. 用Python实现的二分查找算法(基于递归函数)

    一.递归的定义 1.什么是递归:在一个函数里在调用这个函数本身 2.最大递归层数做了一个限制:997,但是也可以自己限制 1 def foo(): 2 print(n) 3 n+=1 4 foo(n) ...

随机推荐

  1. python中完善decorator

    @decorator可以动态实现函数功能的增加,但是,经过@decorator“改造”后的函数,和原函数相比,除了功能多一点外,有没有其它不同的地方? 在没有decorator的情况下,打印函数名: ...

  2. R中的数据重塑函数

    1.去除重复数据 函数:duplicated(x, incomparables = FALSE, MARGIN = 1,fromLast = FALSE, ...),返回一个布尔值向量,重复数据的第一 ...

  3. linux usb简介

    参考书:<linux device drivers>.<usb 2.0规范> <usb3.1规范><usb白皮书> 以linux为例来说明usb系统. ...

  4. java resources 红叉 Cannot change version of project facet Dynamic Web Module to 2.5

    在使用maven导入项目的时候,markers提示Cannot change version of project facet Dynamic Web Module to 2.5,不能将工程转换为2. ...

  5. vs+mysql+ef配置方法

    这次的项目用的是MySQL数据库,但是ADO.NET实体数据模型默认是不支持MySQL数据库的,本文档将介绍如何让VS ADO.NET实体数据模型支持MySQL. 一.安装插件 1.VS插件 mysq ...

  6. 【bzoj3747】Kinoman[POI2015](线段树)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3747 对于这种题,考虑固定区间的右端点为r,设区间左端点为l能取得的好看值总和为a[l] ...

  7. 加和求不同的组合方式数目(dp)

    描述 有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式.如: n=5,5个数分别为1,2,3,4,5,t=5: 那么可能的组合有5=1+4和5=2+3和5=5三种组合方式. 输入 输入的第 ...

  8. Java注解处理器

    Java注解处理器 2015/03/03 | 分类: 基础技术 | 0 条评论 | 标签: 注解 分享到:1 译文出处: race604.com   原文出处:Hannes Dorfmann Java ...

  9. ZSTU 4241 圣杯战争(线段树+经典)

    题意:CS召唤了n个实验怪兽,第i号怪兽在i这个位置出.并把KI召唤出的第i位从者安排在pos(i)处,总共有m位从者. 第i只怪兽有战斗力atk(i), 而i号从者的体力为AP(i).如果从者想要移 ...

  10. php提前输出响应及注意问题

    1.浏览器和服务器之间是通过HTTP进行通信的,浏览器发送请求给服务器,服务器处理完请求后,发送响应结果给浏览器,浏览器展示给用户.如果服务器处理请求时间比较长,那么浏览器就需要等待服务器的处理结果. ...