BZOJ 4823: [Cqoi2017]老C的方块





分析:
我觉得我的网络流白学了...QAQ...
其实数据范围本是无法用网络流跑过去的,然而出题者想让他跑过去,也就跑过去了...
看到题目其实感觉很麻烦,不知道从哪里入手,那么仔细观察所给出的有用信息...
我们考虑网格图是一个含有挡板的图,这个挡板的分布很有规律,大概是每一行的相邻两个挡板都隔了四个格子,并且奇数行的排列相同,偶数行的排列相同...
然后考虑不合法的方块形状有什么共同点:仔细观察就会发现,所有的不合法图形中,挡板的左边至少有一个格子,右边至少有一个格子,并且左边的格子连着一个格子,右边的的格子连着一个格子...也就是说,其实我们如果要使得整张图的所有方块构成的图形全部合法就要满足下图中如果挡板两边的紫色格子都有方块存放的话,那么,和这两个紫色格子相邻的色格子和黑色格子不能同时存在...

我们发现刚好相邻隔板之间的四个格子就是为不合法图案而设计的...
于是就变成了经典的限制问题...经典的最小割...
如果不考虑紫色的格子,那么这整张网格图就是一个二分图...我们给这张图染色...

那么对于所有的白点,我们连$<S,x,w[x]>$的边,对于所有的黑点我们连$<x,T,w[x]>$的边,然后因为要保证紫色格子周围黑白点不能同时存在,所以,对于所有的黑点,我们从紫色格子像黑点连$inf$的边,从白点像紫色格子连$inf$的边,然后因为我们两个紫色格子不同时存在的时候黑白点是可以同时存在的,所以两个紫色格子之间连上$min(w[x],w[y])$的边...然后求最小割就好了...
给出了不合法的图形,一定要找到不合法的方案的相同点,然后转换成一些基础的模型来解决...
对于网格图的问题,二分图应该是最常见的应用...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<map>
//by NeighThorn
#define inf 0x3f3f3f3f
using namespace std; const int maxn=100000+5,maxm=1000000+5; int n,m,S,T,no,cnt;
int hd[maxn],fl[maxm],to[maxm],nxt[maxm],pos[maxn];
int mv[2][3][2]={-1,0,1,0,0,1,-1,0,1,0,0,-1}; vector<int> v[maxn]; map< pair<int,int>,pair<int,int> > mp; inline void add(int x,int y,int s){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=0;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool bfs(void){
memset(pos,-1,sizeof(pos));
int head=0,tail=0,q[maxn];
q[0]=S;pos[S]=0;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-1;i=nxt[i])
if(fl[i]&&pos[to[i]]==-1)
pos[to[i]]=pos[top]+1,q[++tail]=to[i];
}
return pos[T]!=-1;
} inline int find(int v,int f){
if(v==T) return f;
int res=0,t;
for(int i=hd[v];i!=-1&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+1&&fl[i])
t=find(to[i],min(f-res,fl[i])),res+=t,fl[i]-=t,fl[i^1]+=t;
if(!res) pos[v]=-1;
return res;
} inline int dinic(void){
int res=0,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} signed main(void){
#ifndef ONLINE_JUDGE
freopen("block1.in","r",stdin);
#endif
memset(hd,-1,sizeof(hd));
scanf("%d%d%d",&m,&n,&no);S=0,T=no+1;
for(int i=1,x,y,w;i<=no;i++)
scanf("%d%d%d",&y,&x,&w),mp[make_pair(x,y)]=make_pair(i,w),v[x].push_back(y);
for(int i=1;i<=n;i++)
sort(v[i].begin(),v[i].end());
for(int i=1,x,y,xw,yw,be,lx,ly,rx,ry;i<=n;i++)
for(int j=0;j<v[i].size();j++){
x=i,y=v[i][j];
if((x&1)&&y%4==1){
if(j<v[i].size()-1&&v[i][j+1]==y+1)
add(mp[make_pair(x,y)].first,mp[make_pair(x,y+1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y+1)].second));
}
else if((x&1)&&y%4==2){
for(int k=0;k<3;k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
add(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
}
else if((x&1)==0&&y%4==0){
if(j>0&&v[i][j-1]==y-1)
add(mp[make_pair(x,y)].first,mp[make_pair(x,y-1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y-1)].second));
}
else if((x&1)==0&&y%4==3){
for(int k=0;k<3;k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
add(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
}
else if(((x+y)&1)&&(x&1)){
for(int k=0;k<3;k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
add(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
add(S,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else if((x&1)&&((x+y)&1)==0){
for(int k=0;k<3;k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
add(mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,mp[make_pair(x,y)].first,inf);
add(mp[make_pair(x,y)].first,T,mp[make_pair(x,y)].second);
}
else if(((x+y)&1)&&(x&1)==0){
for(int k=0;k<3;k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
add(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
add(S,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else{
for(int k=0;k<3;k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
add(mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,mp[make_pair(x,y)].first,inf);
add(mp[make_pair(x,y)].first,T,mp[make_pair(x,y)].second);
}
}
printf("%d\n",dinic());
return 0;
}
By NeighThorn
BZOJ 4823: [Cqoi2017]老C的方块的更多相关文章
- bzoj 4823: [Cqoi2017]老C的方块 [最小割]
4823: [Cqoi2017]老C的方块 题意: 鬼畜方块游戏不解释... 有些特殊边,有些四个方块组成的图形,方块有代价,删掉一些方块使得没有图形,最小化代价. 比较明显的最小割,一个图形中必须删 ...
- bzoj 4823 [Cqoi2017]老C的方块——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...
- BZOJ 4823 [Cqoi2017]老C的方块 ——网络流
lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html 我还是太菜了.以后遇到这种题目应该分析分析性质的. 网络流复杂度真是$O(玄学)$ #in ...
- bzoj 4823: [Cqoi2017]老C的方块【最大权闭合子图】
参考:https://www.cnblogs.com/neighthorn/p/6705785.html 并不是黑白染色而是三色染色(还有四色的,不过是一个意思 仔细观察一下不合法情况,可以发现都是特 ...
- bzoj4823: [Cqoi2017]老C的方块(最小割)
4823: [Cqoi2017]老C的方块 题目:传送门 题解: 毒瘤题ORZ.... 太菜了看出来是最小割啥边都不会建...狂%大佬强强强 黑白染色?不!是四个色一起染,四层图跑最小割... 很 ...
- 【BZOJ4823】[CQOI2017]老C的方块(网络流)
[BZOJ4823][CQOI2017]老C的方块(网络流) 题面 BZOJ 题解 首先还是给棋盘进行黑白染色,然后对于特殊边左右两侧的格子单独拎出来考虑. 为了和其他格子区分,我们把两侧的这两个格子 ...
- bzoj 4822: [Cqoi2017]老C的任务
4822: [Cqoi2017]老C的任务 练手速... #include <iostream> #include <cstdio> #include <cstring& ...
- BZOJ 4823 Luogu P3756 [CQOI2017]老C的方块 (网络流、最小割)
题目链接 (Luogu) https://www.luogu.org/problem/P3756 (BZOJ) http://lydsy.com/JudgeOnline/problem.php?id= ...
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
随机推荐
- Linux(centos)搭建SVN服务器完美方案及遇到的问题--费元星站长
QQ:971751392 (欢迎交流) linux搭建SVN服务器 安装步骤如下: 1.yum install subversion 2.输入rpm -ql subversion查看安装位置,如下 ...
- Github上的1000多本免费电子书重磅来袭!
Github上的1000多本免费电子书重磅来袭! 以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...
- 一步一步构建手机WebApp开发——页面布局篇
继上一篇:一步一步构建手机WebApp开发——环境搭建篇过后,我相信很多朋友都想看看实战案例,这一次的教程是页面布局篇,先上图: 如上图所示,此篇教程便是教初学者如何快速布局这样的页面.废话少说,直接 ...
- mysql连接jdbc查询代码
package com.answer.test; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.S ...
- 前端技术Jquery与Ajax使用总结
前端技术Jquery与Ajax使用总结 虽然主要是做的后端,但是由于有些时候也要写写前台的界面,因此也就学习了下Jquery和Ajax的一些知识,虽说此次写的这些对于前端大神来说有些班门弄斧的感觉,但 ...
- 「日常训练」 Soldier and Number Game (CFR304D2D)
题意 (Codeforces 546D) 给定一个数x=a!b!" role="presentation">x=a!b!x=a!b!的形式,问其中有几个质因数. 分 ...
- CAS单点登录(一):单点登录与CAS理论介绍
一.什么是单点登录(SSO) 单点登录主要用于多系统集成,即在多个系统中,用户只需要到一个中央服务器登录一次即可访问这些系统中的任何一个,无须多次登录. 单点登录(Single Sign On),简称 ...
- Python-学习-项目1-即时标记-1
买了一本Python入门,奈何看不下去,只能是先看后面的项目,看到那里不懂的时候在回去学习. 项目名字:即时标记 大致的意思就是把一个纯文本文件标记成自己想要的格式文件. 首先就是待处理文本,我找不到 ...
- browsersync的安装与基本使用
browser-sync启动命令 Browsersync能让浏览器实时.快速响应您的文件更改(html.js.css.sass.less等)并自动刷新页面. 官网文档:http://www.brows ...
- tp5 项目实战 初级 文字步骤
项目实战 环境搭建 新建模块 admin 新建文件夹 controller model view View 中新建 user index 相关样式 js 图片 放入publ ...