Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 24019   Accepted: 12540

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

Push-Relabel算法 157ms :
 #include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define MAXN 202
const int INT_MAX = 0x3f3f3f3f ;
int s, t;
int n, np, nc, m;
char str[];
int c[MAXN][MAXN];
int f[MAXN][MAXN];
int e[MAXN];
int h[MAXN];
void push(int u, int v)
{
int d = min(e[u], c[u][v] - f[u][v]);
f[u][v] += d;
f[v][u] = -f[u][v];
e[u] -= d;
e[v] += d;
}
bool relabel(int u)
{
int mh = INT_MAX;
for(int i=; i<n+; i++)
{
if(c[u][i] > f[u][i])
mh = min(mh, h[i]);
}
if(mh == INT_MAX)
return false; //残留网络中无从u出发的路
h[u] = mh + ;
for(int i=; i<n+; i++)
{
if(e[u] == ) //已无余流,不需再次push
break;
if(h[i] == mh && c[u][i] > f[u][i]) //push的条件
push(u, i);
}
return true;
}
void init_preflow()
{
memset(h, , sizeof(h));
memset(e, , sizeof(e));
h[s] = n+;
for(int i=; i<n+; i++)
{
if(c[s][i] == )
continue;
f[s][i] = c[s][i];
f[i][s] = -f[s][i];
e[i] = c[s][i];
e[s] -= c[s][i];
}
}
void push_relabel()
{
init_preflow();
bool flag = true; //表示是否还有relabel操作
while(flag)
{
flag = false;
for(int i=; i<n; i++)
if(e[i] > )
flag = flag || relabel(i);
}
}
int main()
{
while(scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF)
{
s = n; t = n+;
memset(c, , sizeof(c));
memset(f, , sizeof(f));
while(m--)
{
scanf("%s", &str);
int u=, v=, z=;
sscanf(str, "(%d,%d)%d", &u, &v, &z);
c[u][v] = z;
}
for(int i=; i<np+nc; i++)
{
scanf("%s", &str);
int u=, z=;
sscanf(str, "(%d)%d", &u, &z);
if(i < np)
c[s][u] = z;
else if(i >= np && i < np + nc)
c[u][t] = z;
}
push_relabel();
printf("%d\n", e[t]);
}
}

dinic递归 110ms / 非递归 110 或 94 ms:http://hefeijack.iteye.com/blog/1885944

dinic 63ms/SAP 63 ms:http://www.cnblogs.com/kuangbin/archive/2012/09/11/2680908.html

dinic 63ms :http://blog.csdn.net/u011721440/article/details/38611197

初学者可以先去poj1273试试水=。=

这道题只要加一个 源点 和 汇点 , 就万事大吉了。

自己写了一遍,用dinic的递归形式,一开始tle,但就加了一句话,813msAC,

貌似是一种优化,但为啥不清楚。

 #include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int M = , inf = 0x3f3f3f3f ;
int m , n ;
int map[M][M] ;
int dis[M]; bool bfs ()
{
queue <int> q ;
while (!q.empty ())
q.pop () ;
memset (dis , 0xff , sizeof(dis)) ;
dis[] = ;
q.push () ;
while (!q.empty () ) {
int u = q.front () ;
q.pop () ;
for (int v = ; v <= n ; v++) {
if (map[u][v] && dis[v] == -) {
dis[v] = dis[u] + ;
q.push (v) ;
}
}
}
if (dis[n] > )
return true ;
return false ;
} int find (int u , int low)
{
int a = ;
if (u == n)
return low ;
for (int v = ; v <= n ; v++) {
if (map[u][v] && dis[v] == dis[u] + && (a = find (v , min(map[u][v] , low)))) {
map[u][v] -= a ;
map[v][u] += a ;
return a ;
}
}
dis[u] = - ;//就这句
return ;
} int main ()
{
//freopen ("b.txt" , "r" , stdin) ;
int u , v , w ;
int ans ;
while (~ scanf ("%d%d" , &m , &n)) {
memset (map , , sizeof(map)) ;
while (m--) {
scanf ("%d%d%d" , &u , &v , &w) ;
map[u][v] += w ;
}
int maxn = ;
while (bfs()) {
if (ans = find( , inf))
maxn += ans ;
}
printf ("%d\n" , maxn) ;
}
return ;
}

用邻接表可以进一步优化(但上面那句话仍要加):因为用矩阵的话在find 和 bfs 时找点都要遍历一遍所有的点,但用邻接表的话可以很快找到。

110msAC:

 #include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int M = , inf = 0x3f3f3f3f ;
struct edge
{
int u , v , time_u ;
int w ;
}e[M * M * ];
int n , np , nc , m ;
int src , des ;
int cnt = ;
int dis[M] ;
char st[] ;
int head[M * M * ] ; void addedge (int u , int v , int w)
{
e[cnt].u = u ; e[cnt].v = v ; e[cnt].w = w ; e[cnt].time_u = head[u] ;
head[u] = cnt++ ;
e[cnt].v = u ; e[cnt].u = v ; e[cnt].w = ; e[cnt].time_u = head[v] ;
head[v] = cnt++ ;
}
bool bfs ()
{
queue <int> q ;
while (!q.empty ())
q.pop () ;
memset (dis , - , sizeof(dis)) ;
dis[src] = ;
q.push (src) ;
while (!q.empty ()) {
int u = q.front () ;
q.pop () ;
for (int i = head[u] ; i != - ; i = e[i].time_u) {
int v = e[i].v ;
if (dis[v] == - && e[i].w > ) {
dis[v] = dis[u] + ;
q.push (v) ;
}
}
}
if (dis[des] > )
return true ;
return false ;
} int find (int u , int low)
{
int a = ;
if (u == des)
return low ;
for (int i = head[u] ; i != - ; i = e[i].time_u) {
int v = e[i].v ;
if (e[i].w > && dis[v] == dis[u] + && (a = find(v , min (low , e[i].w)))) {
e[i].w -= a ;
e[i^].w += a ;
return a ;
}
}
dis[u] = - ;
return false ;
} int main ()
{
// freopen ("a.txt" , "r" , stdin) ;
int u , v , w ;
while (~ scanf ("%d%d%d%d" , &n , &np , &nc , &m)) {
src = n ;
des = n + ;
cnt = ;
memset (head , - , sizeof(head)) ;
while (m--) {
scanf ("%s" , st) ;
sscanf (st , "(%d,%d)%d" , &u , &v , &w) ;
addedge(u , v , w) ;
}
while (np--) {
scanf ("%s" , st) ;
sscanf (st , "(%d)%d" , &v , &w) ;
addedge (src , v , w) ;
}
while (nc--) {
scanf ("%s" , st) ;
sscanf (st , "(%d)%d" , &u , &w) ;
addedge (u , des , w) ;
} int ans = , res = ;
while (bfs()) {
while () {
if (ans = find(src , inf))
res += ans ;
else
break ;
}
}
printf ("%d\n" , res) ;
}
return ;
}

head[u]用来存放点u最新出现的时间 ,感觉和tarjan算法中的dfn[u]差不多;

time_u则保存上一次点u出现的时间 。

Power Network(网络流最大流 & dinic算法 + 优化)的更多相关文章

  1. POJ训练计划1459_Power Network(网络流最大流/Dinic)

    解题报告 这题建模实在是好建.,,好贱.., 给前向星给跪了,纯dinic的前向星居然TLE,sad.,,回头看看优化,.. 矩阵跑过了.2A,sad,,, /******************** ...

  2. 网络流最大流——dinic算法

    前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问 ...

  3. [讲解]网络流最大流dinic算法

    网络流最大流算法dinic ps:本文章不适合萌新,我写这个主要是为了复习一些细节,概念介绍比较模糊,建议多刷题去理解 例题:codevs草地排水,方格取数 [抒情一下] 虽然老师说这个多半不考,但是 ...

  4. POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 D ...

  5. POJ1459 Power Network 网络流 最大流

    原文链接http://www.cnblogs.com/zhouzhendong/p/8326021.html 题目传送门 - POJ1459 题意概括 多组数据. 对于每一组数据,首先一个数n,表示有 ...

  6. 网络流——最大流Dinic算法

    前言 突然发现到了新的一年什么东西好像就都不会了凉凉 算法步骤 建残量网络图 在残量网络图上跑增广路 重复1直到没有增广路(注意一个残量网络图要尽量把价值都用完,不然会浪费建图的时间) 代码实现 #i ...

  7. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  8. hdu-3572 Task Schedule---最大流判断满流+dinic算法

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3572 题目大意: 给N个任务,M台机器.每个任务有最早才能开始做的时间S,deadline E,和持 ...

  9. 网络流(最大流-Dinic算法)

    摘自https://www.cnblogs.com/SYCstudio/p/7260613.html 网络流定义 在图论中,网络流(Network flow)是指在一个每条边都有容量(Capacity ...

随机推荐

  1. EventBus框架在Android多Pane(Fragment)中的应用

    通常多pane的设计中,比如Fragment A是个Headline,Fragement B是detail,那么B通常需要实现A的点击事件的接口,这样子的话,两个fragment就高耦合了,而且需要在 ...

  2. 分享两个你可能不知道的Java小秘密

    引言 最近LZ的工作发生了重大变化,以后博文的更新速度可能会再度回温,希望猿友们可以继续关注. 近期LZ辞掉了项目经理的工作,不过并未离开公司,是转到了基础研发部做更基础的研发,为广大技术人员服务.这 ...

  3. Dictionary使用

    /// <summary> /// 除去数组中的空值和签名参数并以字母a到z的顺序排序 /// </summary> /// <param name="dicA ...

  4. 第二十三课:jQuery.event.add的原理以及源码解读

    本课主要来讲解一下jQuery是如何实现它的事件系统的. 我们先来看一个问题: 如果有一个表格有100个tr元素,每个都要绑定mouseover/mouseout事件,改成事件代理的方式,可以节省99 ...

  5. 第十四课:js操作节点的插入,复制,移除

    节点插入 appendChild方法,insertBefore方法是常用的两个节点插入方法,具体实现,请看js高级程序设计,或者自行百度. 这里提一下面试时经常会问到的问题,插入多个节点时,你是怎么插 ...

  6. “耐撕”团队 2016.3.25 站立会议

    成员: Z 郑蕊 * 组长 (博客:http://www.cnblogs.com/zhengrui0452/), P 濮成林(博客:http://www.cnblogs.com/charliePU/) ...

  7. 另一套Oracle SQL练习题,更新参考答案

    题干: create table student( sno ) primary key, sname ), sage ), ssex ) ); create table teacher( tno ) ...

  8. iOS边练边学--父子控件之作为导航控制器的子类产生的问题以及网易新闻练习

    一.导航控制器的子类 作为导航控制器的子类,并且是导航控制器子类中的第一个,系统会默认给子控件添加EdgeInsert属性,把导航栏的宽度挤出来.但是系统只会默认修改第一个. 解决办法1:系统帮忙给第 ...

  9. py替换掉换行符

    for line in file.readlines(): line=line.strip('\n')

  10. Ubuntu 12.10安装OpenGL

    http://wiki.ubuntu-tw.org/index.php?title=Howto_Install_OpenGL_Development_Environment 前言 OpenGL 是一套 ...