洛谷P3834 可持久化线段树(主席树)模板
题目:https://www.luogu.org/problemnew/show/P3834
无法忍受了,我要写主席树!
解决区间第 k 大查询问题,可以用主席树,像前缀和一样建立 n 棵前缀区间的权值线段树;
然后 n 棵线段树可以共用一些节点;
线段树的 sum 可以相减,利用这个查询即可;
什么嘛,主席树也没我想得那么难(蛮简单的)!
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=2e5+;
int n,m,q,t[maxn],ls[maxn<<],rs[maxn<<],sum[maxn<<],cnt,a[maxn],b[maxn];
//注意数组范围,每次新增log(m)个点
int build(int l,int r)
{
int rt=++cnt,mid=((l+r)>>);
sum[rt]=;
if(l<r){build(l,mid); build(mid+,r);}
return rt;
}
int update(int pre,int l,int r,int x)
{
int rt=++cnt,mid=((l+r)>>);
ls[rt]=ls[pre]; rs[rt]=rs[pre]; sum[rt]=sum[pre]+;
if(l<r)
{
if(x<=mid)ls[rt]=update(ls[pre],l,mid,x);
else rs[rt]=update(rs[pre],mid+,r,x);
}
return rt;
}
int query(int u,int v,int l,int r,int k)
{
if(l>=r)return l;
int mid=((l+r)>>);
int x=sum[ls[v]]-sum[ls[u]];
if(x>=k)return query(ls[u],ls[v],l,mid,k);
else return query(rs[u],rs[v],mid+,r,k-x);
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+,b+n+);
m=unique(b+,b+n+)-b-;
t[]=build(,m);
for(int i=;i<=n;i++)
{
int tmp=lower_bound(b+,b+m+,a[i])-b;
t[i]=update(t[i-],,m,tmp);
}
for(int i=,l,r,x;i<=q;i++)
{
scanf("%d%d%d",&l,&r,&x);
int tmp=query(t[l-],t[r],,m,x);
printf("%d\n",b[tmp]);
}
return ;
}
洛谷P3834 可持久化线段树(主席树)模板的更多相关文章
- 洛谷 [P3834] 可持久化线段树(主席树)
主席树可以存储线段树的历史状态,空间消耗很大,一般开45n即可 #include <iostream> #include <cstdio> #include <cstri ...
- 洛谷 P3919 可持久化线段树 题解
题面 这题好水的说~很明显就是主席树的大板子 然而我交了3遍才调完所有的BUG,开好足够的数组,卡掉大大的常数: 针对与每次操作,change()会创建新节点,而ask()虽然也会更新左右儿子的节点编 ...
- 【洛谷2839/BZOJ2653】middle(主席树)
题目: 洛谷2839 分析: 记\(s_i\)表示原序列中第\(i\)大的数. 考虑对于任意一个区间\([a,b]\),设它的中位数为\(s_m\),那么这个区间内大于等于\(s_m\)的数和小于\( ...
- LOJ 2555 & 洛谷 P4602 [CTSC2018]混合果汁(二分+主席树)
LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \ ...
- 洛谷P2633 Count on a tree(主席树上树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
- 洛谷P4587 [FJOI2016]神秘数(主席树)
题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...
- 洛谷$P$4137 $Rmq\ Problem / mex$ 主席树
正解:主席树 解题报告: 传送门$QwQ$ 本来以为是道入门无脑板子题,,,然后康了眼数据范围发现并没有我想像的那么简单昂$kk$ 这时候看到$n$的范围不大,显然考虑离散化?但是又感觉似乎布星?因为 ...
- 洛谷$P$3168 任务查询系统 $[CQOI2015]$ 主席树
正解:主席树 解题报告: 传送门! 首先考虑如果是单点修改,那就是个线段树板子嘛$QwQ$ 然后现在是区间修改,对于区间修改,显然就考虑差分下,就变成单点修改辣$QwQ$ 同时单点查询前$k$小也就变 ...
- [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...
随机推荐
- Python开发工具搭建-Pycharm
PyCharm2017. 3.X专业版 安装使用. 注册码激活 本文以 Windows系统 为例: 1.开发工具获取及下载 Anaconda(Python 的集成工具 ) 下载地址: https:// ...
- word-spacing和letter-spacing区别
word-spacing:单词与单词间的间距 letter-spacing:字母与字母间的间距
- Josephus problem(约瑟夫问题,丢手绢问题)
约瑟夫问题 约瑟夫环问题是一个数学应用题:已知n个人(以编号1,2,3.....,n)围坐在一张圆桌的周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列 ...
- python 获取本机环境信息
一.函数 1.socket.gethostname():不带任何参数,返回一个字符串(主机名),通常不完整.比如csm.example.com 只会返回csm 2.socket.getfqdn():带 ...
- [备忘]git常用命令
网站有点儿久没有维护(因为去做其他事情了呗),现在空下来,回来改了网站的一些东西,却忘记了git的一些常用的命令,于是便写下这篇文,方便查阅,免得每次都去看手册(毕竟我懒啊!!) 检查当前文件状态:g ...
- BZOJ 1724 USACO 2006 Nov. 切割木板
倒过来的合并果子? 做法与合并果子一样 维护一个小根堆,每次取出最小的两个数进行合并 #include<cstdio> #include<algorithm> #include ...
- Django——11 状态保持 form表单 登陆注册样例
Django 状态保持 用户状态例子 实现注册登陆实例 django forms 表单的使用 注册功能 登陆功能 状态保持cookie和session 1.http协议是无状态的:每次请求都是一次 ...
- bupt summer training for 16 #7 ——搜索与DP
https://vjudge.net/contest/174962#overview A.我们发现重点在于x,y只要累加就ok了 在每个x上只有上下两种状态,所以可以记忆化搜索 f[0/1][i]表示 ...
- MySql数据库优化可以从哪几个方面进行?
1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽 ...
- 一个oracle bug
最近发现一个RAC db的listener log增长特别快,于是去查看了一下. 先是查看了一下log的内容,发现都是 service_update这种内容,刷新的特别快. service_updat ...