[Luogu 2216] [HAOI2007]理想的正方形
[Luogu 2216] [HAOI2007]理想的正方形
题目描述
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入输出格式
输入格式:
第一行为3个整数,分别表示a,b,n的值
第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
输出格式:
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
输入输出样例
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
1
说明
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100
抱着刷DP的心理,打开了这道题,但好像并不会DP qaq,这里介绍一种二维st的方法
题解:
因为本蒟蒻是刚复习了一下st表做RMQ,所以顺手继续做了
因为我们发现n是不变的,所以st表的时候可以只开三维f[a][b][log n]
然后就可以根据一维st表一样的预处理方式,只是一个状态需要从四个状态转移过来
因为一个正方形肯定是可以分成四个部分的,可能包含重叠.
所以就是这样,然后最后查询的时候也是分成四个部分
于是就结束了...
#include<bits/stdc++.h>
using namespace std;
const int N=;
int a,b,n,lg,ans=1e9;
int mp[N][N],f[N][N][],g[N][N][];
int Min(int a,int b,int c,int d){
return min(a,min(b,min(c,d)));
}
int Max(int a,int b,int c,int d){
return max(a,max(b,max(c,d)));
}
int ask1(int x,int y){
int dx=x+n-,dy=y+n-;
return Max(g[x][y][lg],g[x][dy-(<<lg)+][lg],g[dx-(<<lg)+][y][lg],g[dx-(<<lg)+][dy-(<<lg)+][lg]);
}
int ask2(int x,int y){
int dx=x+n-,dy=y+n-;
return Min(f[x][y][lg],f[x][dy-(<<lg)+][lg],f[dx-(<<lg)+][y][lg],f[dx-(<<lg)+][dy-(<<lg)+][lg]);
}
int main(){
scanf("%d%d%d",&a,&b,&n); memset(f,0x3f3f,sizeof(f)); memset(g,,sizeof(g));
for (int i=;i<=a;++i)
for (int j=;j<=b;++j)
scanf("%d",&mp[i][j]),f[i][j][]=g[i][j][]=mp[i][j];
for (int k=;(<<k)<=n;++k)
for (int i=;i+(<<k)-<=a;++i)
for (int j=;j+(<<k)-<=b;++j){
f[i][j][k]=Min(f[i][j][k-],f[i][j+(<<(k-))][k-],f[i+(<<(k-))][j][k-],f[i+(<<(k-))][j+(<<k-)][k-]);
g[i][j][k]=Max(g[i][j][k-],g[i][j+(<<(k-))][k-],g[i+(<<(k-))][j][k-],g[i+(<<(k-))][j+(<<k-)][k-]);
}
lg=(int)(log(n)/log(2.0));
for (int i=;i<=a-n+;++i)
for (int j=;j<=b-n+;++j)
ans=min(ans,ask1(i,j)-ask2(i,j));
printf("%d",ans);
}
然而事实上,我觉得单调队列的做法也是非常好的,于是借鉴了别人的题解,此下贴出
对于每一行,我们维护定长区间内的最大值和最小值,maxv[i][j]表示第i行第j列,从j-k+1~j这些数的最大值,minv[i][j]同理。这里的k是题目中的n,也就是正方形的长。然后我们已经知道每一行定长区间内的最值,对于每一列,我们也同样维护这一列定长区间的最值,就能得到一个“定正方形”内的最值。
至于定长区间的最值怎么求,那就是用到我们的单调队列了,这道题其实是个模板。这里我是开两个双端队列,maxq和minq,分别维护。(当然开一个也可以,那样代码就比较长了)
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std; const int N = ;
const int INF = 1e9;
int n, m, k, a[N][N], maxv[N][N], minv[N][N]; int main()
{
scanf("%d%d%d", &n, &m, &k);
for (int i=; i<=n; i++)
for (int j=; j<=m; j++) scanf("%d", &a[i][j]);
//以下对于每一行用单调队列求出maxv[i][j]和minv[i][j]
for (int i=; i<=n; i++){
deque<int> maxq, minq;
maxv[i][] = ;
minv[i][] = INF;
for (int j=; j<=m; j++){
while (!maxq.empty() && maxq.front() < j-k+) maxq.pop_front(); //如果范围超过k就弹出队列
while (!maxq.empty() && a[i][maxq.back()] <= a[i][j]) maxq.pop_back(); //维护单调递减的队列使得队首为最大值
maxq.push_back(j);
maxv[i][j] = a[i][maxq.front()];
while (!minq.empty() && minq.front() < j-k+) minq.pop_front();
while (!minq.empty() && a[i][minq.back()] >= a[i][j]) minq.pop_back(); //维护单调递增的队列使得队首为最小值
minq.push_back(j);
minv[i][j] = a[i][minq.front()];
}
}
//以下对于每一列用单调队列求出“定正方形”内最值,并直接计算答案
int ans = INF;
for (int j=k; j<=m; j++){ //注意枚举范围从k开始
deque<int> maxq, minq;
int MaxV = ;
int MinV = INF;
for (int i=; i<=n; i++){
//单调队列用法同上
while (!maxq.empty() && maxq.front() < i-k+) maxq.pop_front();
while (!maxq.empty() && maxv[maxq.back()][j] <= maxv[i][j]) maxq.pop_back();
maxq.push_back(i);
MaxV = maxv[maxq.front()][j];
while (!minq.empty() && minq.front() < i-k+) minq.pop_front();
while (!minq.empty() && minv[minq.back()][j] >= minv[i][j]) minq.pop_back();
minq.push_back(i);
MinV = minv[minq.front()][j];
if (i >= k) ans = min(ans, MaxV - MinV); //注意i >= k时才能更新答案
}
}
printf("%d\n", ans);
return ;
}
[Luogu 2216] [HAOI2007]理想的正方形的更多相关文章
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- Luogu 2216 [HAOI2007]理想的正方形 (单调队列优化)
题意: 给出一个 N×M 的矩阵,以及一个数值 K ,求在给定的矩阵中取出一个 K×K 的矩阵其中最大值减去最小值的最小值. 细节: 没有细节来发暴力走天下,20分也是分啊~~~ QAQ. 分析: 感 ...
- BZOJ1047或洛谷2216 [HAOI2007]理想的正方形
BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...
- 洛谷 2216 [HAOI2007]理想的正方形
题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- HAOI2007 理想的正方形
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1402 Solved: 738[Submit][Sta ...
- RAM——[HAOI2007]理想的正方形
题目:[HAOI2007]理想的正方形 描述: [问题描述] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [输入]: 第一行为3个 ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
随机推荐
- 2019 支付宝App支付 --- PHP
SDK下载:https://docs.open.alipay.com/54/106370/;联系客服:https://cschannel.alipay.com/newPortal.htm?scene= ...
- MySQL的分组和排序
分组操作 select count(id) from userinfo group by pat(id); -- 聚合函数: --count --max --sum --avg ---如果对于二次函数 ...
- centOS防火墙
默认防火墙firewall #停止firewall systemcl stop firewall.service #禁止firewall开机启动 systemctl disable firewall. ...
- 腾讯云&搭建微信小程序服务
准备域名和证书 任务时间:20min ~ 40min 小程序后台服务需要通过 HTTPS 访问,在实验开始之前,我们要准备域名和 SSL 证书. 域名注册 如果您还没有域名,可以在腾讯云上选购,过程可 ...
- 6.3.4 使用marshal 模块操作二进制文件
Python 标准库 marshal 也可以进行对象的序列化和反序列化,下面的代码进行了简单演示. import marshal x1 = 30 x2 = 5.0 x3 = [1,2,3] x4 = ...
- vue 底部bottomnav
<template> <div id="foot"> <div class="tabBar"> <div class= ...
- 公钥基本结构(PKI)的概念
公钥证书 ,通常简称为证书 ,用于在 Internet.Extranet 和 Intranet 上进行身份验证并确保数据交换的安全.证书的颁发者和签署者就是众所周知的 证书颁发机构 (CA),将在下一 ...
- Java基础学习总结(41)——JPA常用注解
JPA全称Java Persistence API.JPA通过JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中. JPA由EJB 3.0软件专 ...
- Maven学习总结(9)——使用Nexus搭建Maven私服
1 . 私服简介 私服是架设在局域网的一种特殊的远程仓库,目的是代理远程仓库及部署第三方构件.有了私服之后,当 Maven 需要下载构件时,直接请求私服,私服上存在则下载到本地仓库:否则,私服请求外部 ...
- 文件描述符 VS 文件句柄
文件描述符 VS 文件句柄 文件描述符是标准 C 里用的,是 int 型的,比如调用 open 函数成功后会返回一个与当前文件相关联的 int 型数字. 文件句柄是 Windows 里用的,是 HAN ...