[Luogu 2216] [HAOI2007]理想的正方形

题目描述

有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

输入输出格式

输入格式:

第一行为3个整数,分别表示a,b,n的值

第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。

输出格式:

仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

输入输出样例

输入样例#1:

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
输出样例#1:

1

说明

问题规模

(1)矩阵中的所有数都不超过1,000,000,000

(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10

(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100

抱着刷DP的心理,打开了这道题,但好像并不会DP qaq,这里介绍一种二维st的方法

题解:

因为本蒟蒻是刚复习了一下st表做RMQ,所以顺手继续做了

因为我们发现n是不变的,所以st表的时候可以只开三维f[a][b][log n]

然后就可以根据一维st表一样的预处理方式,只是一个状态需要从四个状态转移过来

因为一个正方形肯定是可以分成四个部分的,可能包含重叠.

所以就是这样,然后最后查询的时候也是分成四个部分

于是就结束了...

 #include<bits/stdc++.h>
using namespace std;
const int N=;
int a,b,n,lg,ans=1e9;
int mp[N][N],f[N][N][],g[N][N][];
int Min(int a,int b,int c,int d){
return min(a,min(b,min(c,d)));
}
int Max(int a,int b,int c,int d){
return max(a,max(b,max(c,d)));
}
int ask1(int x,int y){
int dx=x+n-,dy=y+n-;
return Max(g[x][y][lg],g[x][dy-(<<lg)+][lg],g[dx-(<<lg)+][y][lg],g[dx-(<<lg)+][dy-(<<lg)+][lg]);
}
int ask2(int x,int y){
int dx=x+n-,dy=y+n-;
return Min(f[x][y][lg],f[x][dy-(<<lg)+][lg],f[dx-(<<lg)+][y][lg],f[dx-(<<lg)+][dy-(<<lg)+][lg]);
}
int main(){
scanf("%d%d%d",&a,&b,&n); memset(f,0x3f3f,sizeof(f)); memset(g,,sizeof(g));
for (int i=;i<=a;++i)
for (int j=;j<=b;++j)
scanf("%d",&mp[i][j]),f[i][j][]=g[i][j][]=mp[i][j];
for (int k=;(<<k)<=n;++k)
for (int i=;i+(<<k)-<=a;++i)
for (int j=;j+(<<k)-<=b;++j){
f[i][j][k]=Min(f[i][j][k-],f[i][j+(<<(k-))][k-],f[i+(<<(k-))][j][k-],f[i+(<<(k-))][j+(<<k-)][k-]);
g[i][j][k]=Max(g[i][j][k-],g[i][j+(<<(k-))][k-],g[i+(<<(k-))][j][k-],g[i+(<<(k-))][j+(<<k-)][k-]);
}
lg=(int)(log(n)/log(2.0));
for (int i=;i<=a-n+;++i)
for (int j=;j<=b-n+;++j)
ans=min(ans,ask1(i,j)-ask2(i,j));
printf("%d",ans);
}

然而事实上,我觉得单调队列的做法也是非常好的,于是借鉴了别人的题解,此下贴出


对于每一行,我们维护定长区间内的最大值和最小值,maxv[i][j]表示第i行第j列,从j-k+1~j这些数的最大值,minv[i][j]同理。这里的k是题目中的n,也就是正方形的长。然后我们已经知道每一行定长区间内的最值,对于每一列,我们也同样维护这一列定长区间的最值,就能得到一个“定正方形”内的最值。

至于定长区间的最值怎么求,那就是用到我们的单调队列了,这道题其实是个模板。这里我是开两个双端队列,maxq和minq,分别维护。(当然开一个也可以,那样代码就比较长了)

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std; const int N = ;
const int INF = 1e9;
int n, m, k, a[N][N], maxv[N][N], minv[N][N]; int main()
{
scanf("%d%d%d", &n, &m, &k);
for (int i=; i<=n; i++)
for (int j=; j<=m; j++) scanf("%d", &a[i][j]);
//以下对于每一行用单调队列求出maxv[i][j]和minv[i][j]
for (int i=; i<=n; i++){
deque<int> maxq, minq;
maxv[i][] = ;
minv[i][] = INF;
for (int j=; j<=m; j++){
while (!maxq.empty() && maxq.front() < j-k+) maxq.pop_front(); //如果范围超过k就弹出队列
while (!maxq.empty() && a[i][maxq.back()] <= a[i][j]) maxq.pop_back(); //维护单调递减的队列使得队首为最大值
maxq.push_back(j);
maxv[i][j] = a[i][maxq.front()];
while (!minq.empty() && minq.front() < j-k+) minq.pop_front();
while (!minq.empty() && a[i][minq.back()] >= a[i][j]) minq.pop_back(); //维护单调递增的队列使得队首为最小值
minq.push_back(j);
minv[i][j] = a[i][minq.front()];
}
}
//以下对于每一列用单调队列求出“定正方形”内最值,并直接计算答案
int ans = INF;
for (int j=k; j<=m; j++){ //注意枚举范围从k开始
deque<int> maxq, minq;
int MaxV = ;
int MinV = INF;
for (int i=; i<=n; i++){
//单调队列用法同上
while (!maxq.empty() && maxq.front() < i-k+) maxq.pop_front();
while (!maxq.empty() && maxv[maxq.back()][j] <= maxv[i][j]) maxq.pop_back();
maxq.push_back(i);
MaxV = maxv[maxq.front()][j];
while (!minq.empty() && minq.front() < i-k+) minq.pop_front();
while (!minq.empty() && minv[minq.back()][j] >= minv[i][j]) minq.pop_back();
minq.push_back(i);
MinV = minv[minq.front()][j];
if (i >= k) ans = min(ans, MaxV - MinV); //注意i >= k时才能更新答案
}
}
printf("%d\n", ans);
return ;
}

[Luogu 2216] [HAOI2007]理想的正方形的更多相关文章

  1. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  2. Luogu 2216 [HAOI2007]理想的正方形 (单调队列优化)

    题意: 给出一个 N×M 的矩阵,以及一个数值 K ,求在给定的矩阵中取出一个 K×K 的矩阵其中最大值减去最小值的最小值. 细节: 没有细节来发暴力走天下,20分也是分啊~~~ QAQ. 分析: 感 ...

  3. BZOJ1047或洛谷2216 [HAOI2007]理想的正方形

    BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...

  4. 洛谷 2216 [HAOI2007]理想的正方形

    题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...

  5. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  6. HAOI2007 理想的正方形

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1402  Solved: 738[Submit][Sta ...

  7. RAM——[HAOI2007]理想的正方形

    题目:[HAOI2007]理想的正方形 描述: [问题描述] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [输入]: 第一行为3个 ...

  8. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  9. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

随机推荐

  1. 零基础学习Linux培训,应该选择哪个培训班?

    云计算早已不是什么稀奇的概念,它的火爆让Linux运维工程师这个职业越来越重要.在当今各类云平台提供的系统中,Linux系统几乎毫无争议的独占鳌头,市场份额进一步扩张. 这也让Linux运维工程师职位 ...

  2. ModelBinder 请求容错性

    代码 //using System.Web.Mvc; public class TrimToDBCModelBinder : DefaultModelBinder { public override ...

  3. Python 输出带颜色的文字方法

    输出文字带颜色 书写格式,和相关说明如下: #格式: 设置颜色:  \033[显示方式;前景色;背景色m     \033[0m 方法: 字体色 背景色 颜色 -------------------- ...

  4. 倍增/线段树维护树的直径 hdu5993/2016icpc青岛L

    题意: 给一棵树,每次询问删掉两条边,问剩下的三棵树的最大直径 点10W,询问10W,询问相互独立 Solution: 考虑线段树/倍增维护树的直径 考虑一个点集的区间 [l, r] 而我们知道了有 ...

  5. Leetcode 48.旋转矩阵

    旋转矩阵 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: ...

  6. hdu_1859_最小长方形_201402282048

    最小长方形 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. Spell checker POJ 1035 字符串

    Spell checker Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25426   Accepted: 9300 De ...

  8. [转]C#综合揭秘——深入分析委托与事件

    引言 本篇文章将为你介绍一下 Delegate 的使用方式,逐渐揭开 C# 当中事件(Event)的由来,它能使处理委托类型的过程变得更加简单.还将为您解释委托的协变与逆变,以及如何使用 Delega ...

  9. OpenCV摄像头读取

    在Mac下面使用默认的OpenCV读取摄像头程序会报错 int main(int, char**) { VideoCapture cap(0); // open the default camera ...

  10. Bootstrap基础--文本对齐风格

    在排版中离不开文本的对齐方式.在CSS中常常使用text-align来实现文本的对齐风格的设置.其中主要有四种风格: ☑  左对齐,取值left ☑  居中对齐,取值center ☑  右对齐,取值r ...