先上题目:

WuKong

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1070    Accepted Submission(s): 384

Problem Description
Liyuan wanted to rewrite the famous book “Journey to the West” (“Xi You Ji” in Chinese pinyin). In the original book, the Monkey King Sun Wukong was trapped by the Buddha for 500 years, then he was rescued by Tang Monk, and began his journey to the west. Liyuan thought it is too brutal for the monkey, so he changed the story:

One day, Wukong left his home - Mountain of Flower and Fruit, to the Dragon   King’s party, at the same time, Tang Monk left Baima Temple to the Lingyin Temple to deliver a lecture. They are both busy, so they will choose the shortest path. However, there may be several different shortest paths between two places. Now the Buddha wants them to encounter on the road. To increase the possibility of their meeting, the Buddha wants to arrange the two routes to make their common places as many as possible. Of course, the two routines should still be the shortest paths.

Unfortunately, the Buddha is not good at algorithm, so he ask you for help.

 
Input
There are several test cases in the input. The first line of each case contains the number of places N (1 <= N <= 300) and the number of roads M (1 <= M <= N*N), separated by a space. Then M lines follow, each of which contains three integers a b c, indicating there is a road between place a and b, whose length is c. Please note the roads are undirected. The last line contains four integers A B C D, separated by spaces, indicating the start and end points of Wukong, and the start and end points of Tang Monk respectively.

The input are ended with N=M=0, which should not be processed.

 
Output
Output one line for each case, indicating the maximum common points of the two shortest paths.
 
Sample Input
6 6
1 2 1
2 3 1
3 4 1
4 5 1
1 5 2
4 6 3
1 6 2 4
0 0
 
Sample Output
3
 
Hint: One possible arrangement is (1-2-3-4-6) for Wukong and (2-3-4) for Tang Monk. The number of common points are 3.
 
  题意:给你一个无向图,给出孙悟空的出发地点和目的地点,唐僧的出发地点和目的地地点,问你如果他俩都走最短路的情况下(如果某个人有多条最短路的时候,那么这个人会走相遇点最多的那条),最多可以有多少个相遇的地方。
  这一题首先需要先求出两者的最短路,因为这里的点不是很多只有300个,所以可以用Flyod先求出多源最短路,同时需要求出某两点之间的最短路最多有多少个点。为什么需要求某两点最多有多少个点?这里经过分析可以得出,如果两条最短路有相交的部分,那么这些相交的部分一定是连续的。为什么呢?这里的分析和dij的分析一样。因为求最短路的时候对于某一个点延伸出去的时候是选最短的那条路,所以如果该点是重合点,那么如果还有重合点,那就意味着有一段最短路同时存在于两条最短路之间,所以如果我们求最短路的时候顺便把两点之间最短路最多经过了多少个点,那么只要我们枚举两条最短路中间的那一段就可以找到目标的最大值。
  求某两点的最短路最多有多少段的状态转移方程:
  dp[i][j]= max(dp[i][j],dp[i][u]+ dp[u][j])       dis[i][u]+dis[u][j]<dis[i][j]
        dp[i][j]                                          other
  在下面的程序里面dp[i][j]的意思是以i、j为端点的最短路最多有多少条边,所以结果要加一。
  枚举的时候:(dis[s1][i] + dis[i][j] + dis[j][e1] == dis[s1][e1]) && (dis[s2][i] + dis[i][j] + dis[j][e2] == dis[s2][e2])
  枚举的含义是dis[i][j]是s1e1的一段,同时也是s2e2的一段。
 
上代码:
 
 #include <cstdio>
#include <cstring>
#define max(x,y) (x > y ? x : y)
#define MAX 302
#define INF 1000000000
using namespace std; int dis[MAX][MAX],dp[MAX][MAX];
int n,m; void flyod(){
for(int u=;u<=n;u++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(dis[i][j]>dis[i][u]+dis[u][j]){
dis[i][j]=dis[i][u]+dis[u][j];
dp[i][j]=dp[i][u]+dp[u][j];
}else if(dis[i][j]==dis[i][u]+dis[u][j]){
dp[i][j]=max(dp[i][u]+dp[u][j],dp[i][j]);
}
}
}
}
} int main()
{
int a,b,l;
int s1,e1,s2,e2;
int ans;
//freopen("data.txt","r",stdin);
while(scanf("%d %d",&n,&m),(n+m)){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
dis[i][j]= i==j ? : INF;
dp[i][j]=;
}
}
for(int i=;i<m;i++){
scanf("%d %d %d",&a,&b,&l);
if(dis[a][b]>l){
dis[a][b]=dis[b][a]=l;
dp[a][b]=dp[b][a]=;
}
} scanf("%d %d %d %d",&s1,&e1,&s2,&e2);
flyod();
ans=-;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(dp[i][j]>ans && (dis[s1][e1] == dis[s1][i]+dis[i][j]+dis[j][e1])
&& (dis[s2][e2] == dis[s2][i]+dis[i][j]+dis[j][e2]) ){
ans=dp[i][j];
}
}
}
printf("%d\n",ans+);
}
return ;
}

2833

HDU - 2833 - WuKong的更多相关文章

  1. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  2. hdu图论题目分类

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

  3. HDU图论题单

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

  4. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  5. 转载 - 最短路&差分约束题集

    出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548    A strange lift基础最短路(或bfs)★ ...

  6. 最短路&查分约束

    [HDU] 1548 A strange lift 根蒂根基最短路(或bfs)★ 2544 最短路 根蒂根基最短路★ 3790 最短路径题目 根蒂根基最短路★ 2066 一小我的观光 根蒂根基最短路( ...

  7. HDU 5025:Saving Tang Monk(BFS + 状压)

    http://acm.hdu.edu.cn/showproblem.php?pid=5025 Saving Tang Monk Problem Description   <Journey to ...

  8. hdu 3635 Dragon Balls (带权并查集)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. hdu 3635 Dragon Balls(并查集应用)

    Problem Description Five hundred years later, the number of dragon balls will increase unexpectedly, ...

随机推荐

  1. C/C++大小端模式与位域

    一.大端小端: 1.大端:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中 例如:0x12345678 在内存中的存储为  : 0x0000 0x0001 0x0002 0x00 ...

  2. lodop多打印一页白纸

    [错误还原]Lodop多张空白页测试2 [错误还原]Lodop多出空白页测试 http://blog.sina.com.cn/s/blog_157ebf1370102wta1.html 上面这个链接是 ...

  3. Python 42 mysql用户管理 、pymysql模块

    一:mysql用户管理 什么是mysql用户管理 mysql是一个tcp服务器,应用于操作服务器上的文件数据,接收用户端发送的指令,接收指令时需要考虑到安全问题, ATM购物车中的用户认证和mysql ...

  4. 练习2 及pl/sql

    Rownum 如果不是对主键排序是不会变得 -查询没有学分的学生信息 --SELECT * FROM z_student zs WHERE zs.code NOT IN (SELECT DISTINC ...

  5. VHDL之concurrent之when

    WHEN (simple and selected) It is one of the fundamental concurrent statements (along with operators ...

  6. 《计算机图形学基础(OpenGL版)》使用院校(更新)

    从清华大学出版社责任编辑处获悉,很多高等院校选用了我们这本教材,读者反应不错! 另外,编辑提供了一份详细的使用院校名单如下: 河南科技学院 中原工学院 河北工程大学 防空兵学院 伊犁师院电信学院 吉林 ...

  7. 读书笔记「Python编程:从入门到实践」_10.文件和异常

    10.1 从文件中读取数据  10.1.1 读取整个文件 with open(~) as object: contents=object.read() with open('C:/Users/jou/ ...

  8. (转)基于Metronic的Bootstrap开发框架经验总结(9)--实现Web页面内容的打印预览和保存操作

    http://www.cnblogs.com/wuhuacong/p/5147368.html 在前面介绍了很多篇相关的<Bootstrap开发框架>的系列文章,这些内容基本上覆盖到了我这 ...

  9. PKCS #1 RSA Encryption Version 1.5 填充方式

    在进行RSA运算时需要将源数据D转化为Encryption block(EB).其中pkcs1padding V1.5的填充模式安装以下方式进行 (1) EB = 00+ BT+PS +00 + D ...

  10. day004 与用户交互、格式化输出、基本运算符

    目录 今天Python所学习的知识如下:①与用户的交互.格式化输出.基本运算符.以下整理汇总下所学习的知识点. 与用户的交互 input 注意事项: input函数接受的都是字符串 python2中的 ...