Aeroplane chess

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1628    Accepted Submission(s): 1103

Problem Description
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the
faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.



There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is
no two or more flight lines start from the same grid.



Please help Hzz calculate the expected dice throwing times to finish the game.
 
Input
There are multiple test cases. 

Each test case contains several lines.

The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).

Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  

The input end with N=0, M=0. 
 
Output
For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
 
Sample Input
2 0
8 3
2 4
4 5
7 8
0 0
 
Sample Output
1.1667
2.3441
 
Source

从0点走到n点。每一次掷筛子得x,向前走x步,有m条飞行通道,能够不算向前走,直接飞到。没有两个飞行线路从同一个点出发,问期望。

dp[i] = ∑(1/6*dp[i+j])+1 ;

对于飞行路线,由i到j的飞行路线,那么就意味着,当它到第i个位置的时候。他就到了第j个位置。dp[i] == dp[j]

从后先前dp,对于每个以计算的dp。有没有飞行路线能够到达这个点,假设有那么那个点的dp也就计算出了

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct node{
int u , v ;
int next ;
}p[2000];
int head[100000] , cnt ;
double dp[110000] , k[7];
void add(int u,int v)
{
p[cnt].u = u ;
p[cnt].v = v ;
p[cnt].next = head[v] ;
head[v] = cnt++ ;
}
int main()
{
int n , m , i , j , l , u , v ;
for(i = 1 ; i <= 6 ; i++)
k[i] = 1.0/6 ;
while(scanf("%d %d", &n, &m) && n+m != 0)
{
memset(head,-1,sizeof(head));
for(i = 0 ; i < n ; i++)
dp[i] = -1;
cnt = 0 ;
while(m--)
{
scanf("%d %d", &u, &v);
add(u,v);
}
for(i = n ; i <= n+6 ; i++)
dp[i] = 0 ;
for(l = head[n] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[n] ;
for(i = n-1 ; i >= 0 ; i--)
{
if( dp[i] != -1 )
{
for(l = head[i] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[i] ;
continue ;
}
dp[i] = 1 ;
for(j = 1 ; j <= 6 ; j++)
dp[i] += k[j]*dp[i+j] ;
for(l = head[i] ; l != -1 ; l = p[l].next)
dp[ p[l].u ] = dp[i] ;
}
printf("%.4lf\n", dp[0]);
}
return 0;
}

hdu4405--Aeroplane chess(概率dp第七弹:飞行棋游戏--2012年网络赛)的更多相关文章

  1. HDU4405 Aeroplane chess (概率DP,转移)

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落 ...

  2. [hdu4405]Aeroplane chess(概率dp)

    题意:某人掷骰子,数轴上前进相应的步数,会有瞬移的情况,求从0到N所需要的期望投掷次数. 解题关键:期望dp的套路解法,一个状态可以转化为6个状态,则该状态的期望,可以由6个状态转化而来.再加上两个状 ...

  3. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  4. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  5. HDU4405 Aeroplane chess(期望dp)

    题意 抄袭自https://www.cnblogs.com/Paul-Guderian/p/7624039.html 正在玩飞行棋.输入n,m表示飞行棋有n个格子,有m个飞行点,然后输入m对u,v表示 ...

  6. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  7. HDU 4405 Aeroplane chess(概率dp,数学期望)

    题目 http://kicd.blog.163.com/blog/static/126961911200910168335852/ 根据里面的例子,就可以很简单的写出来了,虽然我现在还是不是很理解为什 ...

  8. 【HDU4405】Aeroplane chess [期望DP]

    Aeroplane chess Time Limit: 1 Sec  Memory Limit: 32 MB[Submit][Stataus][Discuss] Description Hzz lov ...

  9. hdu4405 Aeroplane chess

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. 紫书 例题7-14 UVa 1602(搜索+STL+打表)

    这道题想了很久不知道怎么设置状态,怎么拓展,怎么判重, 最后看了这哥们的博客 终于明白了. https://blog.csdn.net/u014800748/article/details/47400 ...

  2. java中Collection 与Collections的区别

    1. Collection是集合类的一个顶级接口,其直接继承接口有List与Set 而Collections则是集合类的一个工具类/帮助类,其中提供了一系列静态方法,用于对集合中元素进行排序.搜索以及 ...

  3. web服务启动spring自己主动运行ApplicationListener的使用方法

    我们知道.一般来说一个项目启动时须要载入或者运行一些特殊的任务来初始化系统.通常的做法就是用servlet去初始化.可是servlet在使用spring bean时不能直接注入,还须要在web.xml ...

  4. html屏蔽鼠标右键

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. html页面的简单对话框(alert, confirm, prompt)

    html页面简单的三种对话框例如以下: 1.alert(),最简单的提示框: alert("你好!"); 2.confirm(),有确认和取消两个button: if(confir ...

  6. MySQL超级简明基本操作攻略,给自己看(一)

    系统:Ubuntu 14.04 LTS 安装: apt-get install mysql //安装数据库 apt-get install mysql-workbench //安装图形界面 使用: 启 ...

  7. (转)C/C++ 宏详解

    众多C++书籍都忠告我们C语言宏是万恶之首,但事情总不如我们想象的那么坏,就如同goto一样.宏有一个很大的作用,就是自动为我们产生代码.如果说模板可以为我们产生各种型别的代码(型别替换),那么宏其实 ...

  8. setsockopt 设置socket

    1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:BOOL bReuseaddr=TRUE;setsockopt(s,SOL_SOCKET ,SO ...

  9. Testbench代码设计技巧

    Testbench代码设计技巧 " There are many ways " to code a test case, it all depens on the creativi ...

  10. spark 朴素贝叶斯

    训练代码(scala) import org.apache.spark.mllib.classification.{NaiveBayes,NaiveBayesModel} import org.apa ...