Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html
Feature Pyramid Networks for Object Detection
Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf
Reference : T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection.Computer Vision and Pattern Recognition, 2017. CVPR 2017.
The Feature Pyramid Network (FPN) looks a lot like the U-net. The main difference is that there is multiple prediction layers: one for each upsampling layer. Like the U-Net, the FPN has laterals connection between the bottom-up pyramid (left) and the top-down pyramid (right). But, where U-net only copy the features and append them, FPN apply a 1x1 convolution layer before adding them. This allows the bottom-up pyramid called “backbone” to be pretty much whatever you want. In their experiments, the authors use Resnet-50 as their backbone.

FPN for region-proposal
To achieve region-proposal, the authors add a 3x3 Conv layer followed by two 1x1 Conv for classification and regression on each upsampling layer. These additions are called heads and the weights are shared. For each head, you assign a set of anchors boxes resized to match the head’s shape. The anchors are of multiple pre-defined scales and aspect ratios in order to cover objects of different shapes. Training labels are then assigned to each anchor based on the IoU. A positive label is assigned if the IoU is greater than 70%.
FPN for object Detection
Using Fast(er) R-CNN, they can use FPN as the region proposal part. The proposals are used in combination with RoiPooling and then they can do the same work as Fast(er) R-CNN.
Results
Faster R-CNN on FPN with a ResNet-101 backbone is achieving state of the art on the COCO detection benchmark. It’s also faster than Resnet-101 Faster R-CNN by a significant margin because of the weight sharing in the heads.
Effect of lateral connections
FPN performs better than a normal Conv-Deconv because the Conv-Deconv’s feature maps are wrong according to the authors. Indeed, they argue that the locations of these maps are not precise, because these maps have been downsampled and upsampled several times. There is a 10% jump in accuracy using lateral connections.
Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv的更多相关文章
- 『计算机视觉』FPN:feature pyramid networks for object detection
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...
- 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...
- Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pd ...
- 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...
- 论文阅读 | FPN:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...
- FPN-Feature Pyramid Networks for Object Detection
FPN-Feature Pyramid Networks for Object Detection 标签(空格分隔): 深度学习 目标检测 这次学习的论文是FPN,是关于解决多尺度问题的一篇论文.记录 ...
- Parallel Feature Pyramid Network for Object Detection
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale co ...
- FPN(feature pyramid networks)
多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征 ...
- Paper Reading: Relation Networks for Object Detection
Relation Networks for Object Detection笔记 写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...
随机推荐
- RESTful api风格介绍
RESTful 接口是目前来说比较流行的一种接口,平常在开发中会非常常见. 有过和后端人员对接接口的小伙伴都应该知道,我们所做的大多数操作都是对数据库的四格操作 “增删改查” 对应到我们的接口操作分别 ...
- vue element-ui 2.3.4版本 input number值为0时 显示不出来
解决:官方修复了这个bug.升级element-ui为2.3.5版本就好了
- Miller Rabin算法详解
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...
- Dynamics 365-Full Text Index on Stopwords
之前写了一篇关于Online Relevance Search的博文,然后又看到罗勇大神关于Full Text Index的博文:Dynamics CRM中一个查找字段引发的[血案],于是准备写点关于 ...
- OpenCL的buffer以及sub-buffer
buffer,sub-buffer和image对比 相同点:都是OCL memory对象 维度 特性关键词 buffer 一维 array of bytes sub-buffer 一维 views i ...
- 支持JSP和Servlet的Web服务器
支持JSP和Servlet的Web服务器 1.Tomcat 服务器 目前非常流行的Tomcat服务器是Apache-Jarkarta开源项目中的一个子项目,是一个小型.轻量级的支持JSP和Servle ...
- nginx + flask + uwsgi + centos + python3 搭建web项目
1. python3之前已经搭建好,安装flask,使用 pip3 intall flask,这个比较简单,就不过多介绍 2.我在 /usr/local/nginx/html3 (html3是我新建 ...
- 【转载】关于generate用法的总结【Verilog】
原文链接: [原创]关于generate用法的总结[Verilog] - nanoty - 博客园http://www.cnblogs.com/nanoty/archive/2012/11/13/27 ...
- Docker之进入容器(三)
1.简介 经过前面两篇博客的扫盲,大家多多少少对docker有了一个基本的了解,也接触了docker的常用命令.在这篇博客中,我将介绍进入docker容器的几种方式. 2.进入docker中的几种方式 ...
- A Deep Learning-Based System for Vulnerability Detection(二)
接着上一篇,这篇研究实验和结果. A.用于评估漏洞检测系统的指标 TP:为正确检测到漏洞的样本数量 FP:为检测到虚假漏洞样本的数量(误报) FN:为未检真实漏洞的样本数量(漏报) TN:未检测到漏洞 ...