Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html
Feature Pyramid Networks for Object Detection
Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf
Reference : T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection.Computer Vision and Pattern Recognition, 2017. CVPR 2017.
The Feature Pyramid Network (FPN) looks a lot like the U-net. The main difference is that there is multiple prediction layers: one for each upsampling layer. Like the U-Net, the FPN has laterals connection between the bottom-up pyramid (left) and the top-down pyramid (right). But, where U-net only copy the features and append them, FPN apply a 1x1 convolution layer before adding them. This allows the bottom-up pyramid called “backbone” to be pretty much whatever you want. In their experiments, the authors use Resnet-50 as their backbone.

FPN for region-proposal
To achieve region-proposal, the authors add a 3x3 Conv layer followed by two 1x1 Conv for classification and regression on each upsampling layer. These additions are called heads and the weights are shared. For each head, you assign a set of anchors boxes resized to match the head’s shape. The anchors are of multiple pre-defined scales and aspect ratios in order to cover objects of different shapes. Training labels are then assigned to each anchor based on the IoU. A positive label is assigned if the IoU is greater than 70%.
FPN for object Detection
Using Fast(er) R-CNN, they can use FPN as the region proposal part. The proposals are used in combination with RoiPooling and then they can do the same work as Fast(er) R-CNN.
Results
Faster R-CNN on FPN with a ResNet-101 backbone is achieving state of the art on the COCO detection benchmark. It’s also faster than Resnet-101 Faster R-CNN by a significant margin because of the weight sharing in the heads.
Effect of lateral connections
FPN performs better than a normal Conv-Deconv because the Conv-Deconv’s feature maps are wrong according to the authors. Indeed, they argue that the locations of these maps are not precise, because these maps have been downsampled and upsampled several times. There is a 10% jump in accuracy using lateral connections.
Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv的更多相关文章
- 『计算机视觉』FPN:feature pyramid networks for object detection
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...
- 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...
- Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pd ...
- 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...
- 论文阅读 | FPN:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...
- FPN-Feature Pyramid Networks for Object Detection
FPN-Feature Pyramid Networks for Object Detection 标签(空格分隔): 深度学习 目标检测 这次学习的论文是FPN,是关于解决多尺度问题的一篇论文.记录 ...
- Parallel Feature Pyramid Network for Object Detection
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale co ...
- FPN(feature pyramid networks)
多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征 ...
- Paper Reading: Relation Networks for Object Detection
Relation Networks for Object Detection笔记 写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...
随机推荐
- SAP MM 预留单据里的Base date和Requirement date
SAP MM 预留单据里的Base date和Requirement date Base date可以在预留创建的初始界面指定, 这个日期可以作为预留各个行项目默认的requirement date. ...
- Android WebView的HTML中的select标签不起作用
Android WebView的HTML中的select标签不起作用 经过查询资料,了解到android对html里的select标签是弹出一个原生的选择器. 问题: Webview中的select没 ...
- Visual Studio无法调试
一.最近Visual studio调试不起来,运行完报错 二.解决方法 打开 调试>>>>选项>>>>常规>>>对ASP.NET启用 ...
- Truffle 4.0、Geth 1.7.2、TestRPC在私有链上搭建智能合约
目录 目录 1.什么是 Truffle? 2.适合 Truffle 开发的客户端 3.Truffle的源代码地址 4.如何安装? 4.1.安装 Go-Ethereum 1.7.2 4.2.安装 Tru ...
- SQL Server实际执行计划COST"欺骗"案例
有个系统,昨天Support人员发布了相关升级脚本后,今天发现系统中有个功能不能正常使用了,直接报超时了(Timeout expired)的错误.定位到相关相关存储过程后,然后在优化分析的过程中,又遇 ...
- 操作DataTable数据,修改某列的值
DataTable table : DataRow row=table.Rows[i];//DataTable的第i行 row.BeginEdit();//开始编辑行 row["column ...
- 安装和使用git遇到的问题总结
一,centos7下安装(因为centos7下用yum安装git的版本太低了,所以只能下载源代码,然后用源代码安装) 下载编译工具 yum -y groupinstall "Developm ...
- spring3:多数据源配置使用
0. properties ####################################mysql########################################### d ...
- 从Excel中导入数据时,提示“未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序”的解决办法
注意,64位系统,用64位的补丁文件; https://www.cnblogs.com/A2008A/articles/2438962.html 操作系统:使用的是64位的Windows Server ...
- ueditor富文本编辑器使用百度地图自定义动态地图组件及兼容https及http协议
ueditor富文本编辑器默认支持百度地图组件,但是如果导入动态地图后会加很多默认的地图组件在上面.如果需要自定义动态地图的组件则需要修改ueditor特定的html. ueditor百度地图组件所在 ...