Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html
Feature Pyramid Networks for Object Detection
Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf
Reference : T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection.Computer Vision and Pattern Recognition, 2017. CVPR 2017.
The Feature Pyramid Network (FPN) looks a lot like the U-net. The main difference is that there is multiple prediction layers: one for each upsampling layer. Like the U-Net, the FPN has laterals connection between the bottom-up pyramid (left) and the top-down pyramid (right). But, where U-net only copy the features and append them, FPN apply a 1x1 convolution layer before adding them. This allows the bottom-up pyramid called “backbone” to be pretty much whatever you want. In their experiments, the authors use Resnet-50 as their backbone.

FPN for region-proposal
To achieve region-proposal, the authors add a 3x3 Conv layer followed by two 1x1 Conv for classification and regression on each upsampling layer. These additions are called heads and the weights are shared. For each head, you assign a set of anchors boxes resized to match the head’s shape. The anchors are of multiple pre-defined scales and aspect ratios in order to cover objects of different shapes. Training labels are then assigned to each anchor based on the IoU. A positive label is assigned if the IoU is greater than 70%.
FPN for object Detection
Using Fast(er) R-CNN, they can use FPN as the region proposal part. The proposals are used in combination with RoiPooling and then they can do the same work as Fast(er) R-CNN.
Results
Faster R-CNN on FPN with a ResNet-101 backbone is achieving state of the art on the COCO detection benchmark. It’s also faster than Resnet-101 Faster R-CNN by a significant margin because of the weight sharing in the heads.
Effect of lateral connections
FPN performs better than a normal Conv-Deconv because the Conv-Deconv’s feature maps are wrong according to the authors. Indeed, they argue that the locations of these maps are not precise, because these maps have been downsampled and upsampled several times. There is a 10% jump in accuracy using lateral connections.
Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv的更多相关文章
- 『计算机视觉』FPN:feature pyramid networks for object detection
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...
- 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...
- Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pd ...
- 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...
- 论文阅读 | FPN:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...
- FPN-Feature Pyramid Networks for Object Detection
FPN-Feature Pyramid Networks for Object Detection 标签(空格分隔): 深度学习 目标检测 这次学习的论文是FPN,是关于解决多尺度问题的一篇论文.记录 ...
- Parallel Feature Pyramid Network for Object Detection
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale co ...
- FPN(feature pyramid networks)
多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征 ...
- Paper Reading: Relation Networks for Object Detection
Relation Networks for Object Detection笔记 写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...
随机推荐
- 使用Canvas绘制简单的时钟控件
Canvas是HTML5新增的组件,它就像一块幕布,可以用JavaScript在上面绘制各种图表.动画等. 没有Canvas的年代,绘图只能借助Flash插件实现,页面不得不用JavaScript和F ...
- Android 使用Picasso加载网络图片等比例缩放
在做android图片加载的时候,由于手机屏幕受限,很多大图加载过来的时候,我们要求等比例缩放,比如按照固定的宽度,等比例缩放高度,使得图片的尺寸比例得到相应的缩放,但图片没有变形.显然按照andro ...
- SpringBoot 配置 跨域支持
跨域资源共享(CORS,请求协议,请求地址,请求端口三者必须相同才是同一服务器,否则都要进行跨域操作)标准新增了一组 HTTP 首部字段,允许服务器声明哪些源站有权限访问哪些资源.另外,规范要求,对那 ...
- Redis压缩列表
此篇文章是主要介绍Redis在数据存储方面的其中一种方式,压缩列表.本文会介绍1. 压缩列表(ziplist)的使用场景 2.如何达到节约内存的效果?3.压缩列表的存储格式 4. 连锁更新的问题 5 ...
- linux下的qt串口通信
1.linux下的qt串口通信跟windows唯一的差别就是端口号的名字,windows下面是COM,而linux是ttyUSB0的路径 2.一般情况下linux插上USB转串口线就可以在/dev/目 ...
- react基础语法二
这里只是对自己的学习进行一次总结,也是为了让自己以后如果长时间不使用快速记忆起来的笔记,如果想要学习,还是去官网看文档比较好一些.. 注意 下面的代码的 script标签的type类型都为 “text ...
- android Q build 变化
一 概述 android Q build变化整体上越来越严格,语法上之前能够使用的Q上将不能使用. 二 主要变化 2.1 'USER' 弃用 ‘USER’后面的值会被设置成‘nobody',andr ...
- Windows Java包环境变量的设置
复制Bin文件所在路径 验证
- Java 环境部署之Idea :解决Idea 中gradle编译 war 包编码不对
IDE进行Gradle操作,那么还需要设置IDE的参数.例如在IDEA中,需要打开File->Other Settings->Default Settings->Gradle,在Gr ...
- Saltstack_使用指南05_数据系统-Pillar
1. 主机规划 Pillar文档 https://docs.saltstack.com/en/latest/topics/pillar/index.html 注意事项 修改了master或者minio ...