Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html
Feature Pyramid Networks for Object Detection
Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf
Reference : T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection.Computer Vision and Pattern Recognition, 2017. CVPR 2017.
The Feature Pyramid Network (FPN) looks a lot like the U-net. The main difference is that there is multiple prediction layers: one for each upsampling layer. Like the U-Net, the FPN has laterals connection between the bottom-up pyramid (left) and the top-down pyramid (right). But, where U-net only copy the features and append them, FPN apply a 1x1 convolution layer before adding them. This allows the bottom-up pyramid called “backbone” to be pretty much whatever you want. In their experiments, the authors use Resnet-50 as their backbone.

FPN for region-proposal
To achieve region-proposal, the authors add a 3x3 Conv layer followed by two 1x1 Conv for classification and regression on each upsampling layer. These additions are called heads and the weights are shared. For each head, you assign a set of anchors boxes resized to match the head’s shape. The anchors are of multiple pre-defined scales and aspect ratios in order to cover objects of different shapes. Training labels are then assigned to each anchor based on the IoU. A positive label is assigned if the IoU is greater than 70%.
FPN for object Detection
Using Fast(er) R-CNN, they can use FPN as the region proposal part. The proposals are used in combination with RoiPooling and then they can do the same work as Fast(er) R-CNN.
Results
Faster R-CNN on FPN with a ResNet-101 backbone is achieving state of the art on the COCO detection benchmark. It’s also faster than Resnet-101 Faster R-CNN by a significant margin because of the weight sharing in the heads.
Effect of lateral connections
FPN performs better than a normal Conv-Deconv because the Conv-Deconv’s feature maps are wrong according to the authors. Indeed, they argue that the locations of these maps are not precise, because these maps have been downsampled and upsampled several times. There is a 10% jump in accuracy using lateral connections.
Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv的更多相关文章
- 『计算机视觉』FPN:feature pyramid networks for object detection
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...
- 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...
- Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pd ...
- 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...
- 论文阅读 | FPN:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...
- FPN-Feature Pyramid Networks for Object Detection
FPN-Feature Pyramid Networks for Object Detection 标签(空格分隔): 深度学习 目标检测 这次学习的论文是FPN,是关于解决多尺度问题的一篇论文.记录 ...
- Parallel Feature Pyramid Network for Object Detection
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale co ...
- FPN(feature pyramid networks)
多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征 ...
- Paper Reading: Relation Networks for Object Detection
Relation Networks for Object Detection笔记 写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...
随机推荐
- jsp基础语言-jsp指令
jsp编译指令用于设置jsp程序的属性以及由jsp生成的servlet中的属性. jsp常用的编译指令有3个:include指令.page指令.taglib指令. 一.page指令 1.概念:用来设置 ...
- vuex2中使用mapGetters/mapActions报错解决方法
解决方案 可以安装整个stage2的预置器或者安装 Object Rest Operator 的babel插件 babel-plugin-transform-object-rest-spread . ...
- MockJS和Easy Mock使用
之前做mock数据一直用的json-server,今天同事给我推荐了很好用的工具:Easy Mock,我看完之后是下图的状态 很得劲啊,感觉人生已经达到了高潮 既能伪造接口,又能根据既定的规则生成对应 ...
- Dynamics 365支持的语言(中文语言名/英文语言名)列表
本人微信和易信公众号:微软动态CRM专家罗勇 ,回复277或者20180803可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me ...
- SVN上传的时候没法显示文件名,只显示后缀名
之前在用SVN上传android代码的时候,发现上传列表上的文件没法显示名字,只显示了后缀名,就像这样: 各种疑惑,最终发现解决方法: 右键单击操作栏的status: 然后在出现的选项里面将filen ...
- 如何在WIN10内置Ubuntu中有多个terminal
使用的是tmux来实现在WIN10的内置Ubuntu实现多终端窗口 先安装tmux:sudo apt-get install tumx 启动tmux,tmux 然后就可以在tmux中实现多窗口.其操作 ...
- 如何解决夜神模拟器连不上adb的问题
要搞一个安卓的项目.由于电脑系统是年前刚刚重装的,系统里啥都没有,于是临时安装了一下android studio 2.2,然后又装了一个夜神模拟器.工程打开后,编译通过了,于是打开夜神模拟器,想要通过 ...
- 微信小程序转发微信小程序转发
微信小程序转发涉及以下4个方法: 1.Page.onShareAppMessage({}) 设置右上角“转发”配置,及转发后回调函数返回 shareTicket 票据 2.wx.showSahreMe ...
- 【公众号系列】两分钟学会SAP F1技巧
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[公众号系列]两分钟学会SAP F1技巧 写 ...
- AngularJS学习之旅—AngularJS 模型(四)
1.AngularJS ng-model 指令 1.ng-model 指令用于绑定应用程序数据到 HTML 控制器(input, select, textarea)的值. 2.ng-model 指令可 ...