变量可分为名义型变量、有序型变量或者连续型变量。名义型变量是没有顺序之分的类别变量,如糖尿病类型Diabetes(Type1、Type2),即使在数据中Type1编码为1而Type2编码为2,这也并不表示二者有序。有序变量表示一种顺序关系,而非数量关系,如病情S Status(poor、improved、excellent),显然病情为poor(较差)的病人的状态不如improved(病情好转)的病人,但我们并不知道相差多少。连续型变量可以呈现为某个范围内的任意值,并同时表示了顺序和数量,例如年龄,他能够表示14或者30这样的值以及期间的其他任意值,很清楚15岁的人比14岁的人年长1岁。

类别(名义型)变量和有序类别(有序型)变量在R中称为因子(factor)。因子在R中非常重要,它决定了数据的分析方式及如何进行视觉呈现。

函数factor()以一个整数向量的形式存储类别值,取值范围是[1...k](其中k是名义型变量中唯一值的个数),同时一个由字符串(原始值)组成的内部向量将映射到这些整数上,例如:

> diabetes<-c("Type1","Type2","Type1","Type2")
> diabetes<-factor(diabetes)
> diabetes
[1] Type1 Type2 Type1 Type2
Levels: Type1 Type2

语句diabetes<-factor(diabetes)将向量存储为(1,2,1,1),并在内部将其关联为1=Type1,和2=Type2(具体赋值顺序根据字母顺序而定)。针对向量diabetes 进行的任何分析都会将其作为名义型变量对待,并自动选择适合这一测量尺度的统计方法。

若果要表示有序向量,则需要为函数factor()指定参数ordered=TRUE。给定向量:

> status<-c("Poor","Improved","Excellent","Poor")
> status<-factor(status,ordered = T)
> status
[1] Poor Improved Excellent Poor
Levels: Excellent < Improved < Poor

语句status<-factor(status,ordered = T)将此向量编码为(3,2,1,3),并在内部将其关联为1=Excellent、2=Improved以及3=Poor。但这里对于字符型向量,因自水平默认以字母顺序创建,这对于因子status是有意义的,因为“Excellent”“Improved”“Poor”的排序方式恰好与逻辑顺序一致。如果“Poor”被编码为“Ailing”则顺序将为“Ailing”“Excellent”“Improved”,与逻辑不符;如果理想中的顺序是“Poor”“Improved”“Excellent”,则会出现类似问题。因此可以通过制定levels选项来覆盖默认排序。例如:

> status<-factor(status,ordered = T,levels=c("Poor","Improved","Excellent"))
> status
[1] Poor Improved Excellent Poor
Levels: Poor < Improved < Excellent

数值型变量可用levels和labels参数来编码成因子。如果男性编码被编码成1,女性被编码成2,则代码如下:

> sex<-c(1,2)
> sex<-factor(sex,levels=c(1,2),labels = c("Male","Female"))#注意标签的顺序必须与水平一致
> sex
[1] Male Female
Levels: Male Female

以下代码显示了普通因子与有序因子的不同是如何影响数据分析的

> patientID<-c(1,2,3,4)
> ge<-c(25,34,28,52)
> diabetes<-c("Type1","Type2","Type1","Type1")
> status<-c("Poor","Improved","Excellent","Poor")
> diabetes<-factor(diabetes)
> status<-factor(status,ordered = T)
> patientdata<-data.frame(patientID,age,diabetes,status)
> str(patientdata)#显示对象的结构
'data.frame': 4 obs. of 4 variables:
$ patientID: num 1 2 3 4
$ age : num 25 34 28 52
$ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1
$ status : Ord.factor w/ 3 levels "Excellent"<"Improved"<..: 3 2 1 3
> summary(patientdata)#显示对象的统计概要

> diabetes2<-c("Type1","Type2","Type1","Type1")
> status2<-c("Poor","Improved","Excellent","Poor")
> patientdata2<-data.frame(patientID,age,diabetes2,status2)
> str(patientdata2)#显示对象的结构
'data.frame': 4 obs. of 4 variables:
$ patientID: num 1 2 3 4
$ age : num 25 34 28 52
$ diabetes2: Factor w/ 2 levels "Type1","Type2": 1 2 1 1
$ status2 : Factor w/ 3 levels "Excellent","Improved",..: 3 2 1 3
> summary(patientdata2)#显示对象的统计概要
 

> status<-factor(status,ordered = T,levels=c("Poor","Improved","Excellent"))
> patientdata<-data.frame(patientID,age,diabetes,status)
> str(patientdata)#显示对象的结构
'data.frame': 4 obs. of 4 variables:
$ patientID: num 1 2 3 4
$ age : num 25 34 28 52
$ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1
$ status : Ord.factor w/ 3 levels "Poor"<"Improved"<..: 1 2 3 1
> summary(patientdata)#显示对象的统计概要

首先,以向量形式输入数据;然后,将diabetes和status分别指定为一个普通因子和一个有序型因子;最后,将数据合并为一个数据框。函数str(object)可以提供R中的某个对象(本例为数据框)的信息,它清楚的显示diabetes是一个因子,而status是一个有序型因子,以及此数据框在内部是如何进行编码的。函数summary()会区别对待各个变量,它显示了连续型变量age的最小值、最大值、均值和四分位数,并显示了类别型变量diabetes和status(各水平)的频数值。

R语言学习——因子的更多相关文章

  1. R语言学习 第四篇:函数和流程控制

    变量用于临时存储数据,而函数用于操作数据,实现代码的重复使用.在R中,函数只是另一种数据类型的变量,可以被分配,操作,甚至把函数作为参数传递给其他函数.分支控制和循环控制,和通用编程语言的风格很相似, ...

  2. R语言学习笔记:因子

    R语言中的因子就是factor,用来表示分类变量(categorical variables),这类变量不能用来计算而只能用来分类或者计数. 可以排序的因子称为有序因子(ordered factor) ...

  3. R语言学习4:函数,流程控制,数据框重塑

    本系列是一个新的系列,在此系列中,我将和大家共同学习R语言.由于我对R语言的了解也甚少,所以本系列更多以一个学习者的视角来完成. 参考教材:<R语言实战>第二版(Robert I.Kaba ...

  4. R语言学习笔记之: 论如何正确把EXCEL文件喂给R处理

    博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html ---- 前言: 应用背景兼吐槽 继续延续之前每个月至少一次更新博客,归纳总结学习心得好习惯. ...

  5. R语言学习笔记(二)

    今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") &g ...

  6. R语言学习笔记:小试R环境

    买了三本R语言的书,同时使用来学习R语言,粗略翻下来感觉第一本最好: <R语言编程艺术>The Art of R Programming <R语言初学者使用>A Beginne ...

  7. R语言学习路线和常用数据挖掘包(转)

    对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的 ...

  8. R语言学习笔记︱Echarts与R的可视化包——地区地图

    笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一 ...

  9. R语言学习 第八篇:常用的数据处理函数

    Basic包是R语言预装的开发包,包含了常用的数据处理函数,可以对数据进行简单地清理和转换,也可以在使用其他转换函数之前,对数据进行预处理,必须熟练掌握常用的数据处理函数,本文分享在数据处理时,经常使 ...

随机推荐

  1. C++STL模板库序列容器之deque

    目录 一丶队列容器deque简介 二丶使用代码演示 一丶队列容器deque简介 deque底层跟vector一样,都是数组维护.不同的是可以操作头部. 二丶使用代码演示 #define _CRT_SE ...

  2. 【SpringCloud Eureka源码】从Eureka Client发起注册请求到Eureka Server处理的整个服务注册过程(下)

    目录 一.Spring Cloud Eureka Server自动配置及初始化 @EnableEurekaServer EurekaServerAutoConfiguration - 注册服务自动配置 ...

  3. 痞子衡嵌入式:常用的数据差错控制技术(3)- 和校验(Checksum)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家讲的是嵌入式里数据差错控制技术-和校验. 在系列前一篇文章里,痞子衡给大家介绍了比较简单的校验法-奇偶校验,该校验法主要是针对byte传输校验而 ...

  4. Perl系列文章

    0.Perl书籍推荐 Perl书籍下载 密码:kkqx 下面是一些我学习Perl过程中读过完整的或部分章节的觉得好的书. 入门级别1:<Perl语言入门>即小骆驼 入门级别2:<In ...

  5. [java]static关键字的四种用法

    在java的关键字中,static和final是两个我们必须掌握的关键字.不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提高程序的运行性能,优化程序的结构.下面我们先来了解一下stat ...

  6. 第33章 密码学(Cryptography),密钥(Keys)和HTTPS - Identity Server 4 中文文档(v1.0.0)

    IdentityServer依赖于几个加密机制来完成它的工作. 33.1 令牌签名和验证 IdentityServer需要非对称密钥对来签署和验证JWT.此密钥对可以是证书/私钥组合或原始RSA密钥. ...

  7. Js的reduce()方法

    Js 数组reduce()方法应用一个函数针对数组的两个值(从左到右),以减至一个值. 语法:array.reduce(callback[, initialValue]) 参数说明: 1)callba ...

  8. ElasticSearch入门点滴

    这是Elasticsearch-6.2.4 版本系列的第一篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 ...

  9. Vue开篇之Vue-cli搭建项目

    介绍 Vue.js是一套构建用户界面的渐进式框架.Vue 只关注视图层,采用自底向上增量开发的设计.Vue 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件. 第一步:安装node ...

  10. vue+axios 前端实现的常用拦截

    一.路由拦截使用 首先在定义路由的时候就需要多添加一个自定义字段requireAuth,用于判断该路由的访问是否需要登录.如果用户已经登录,则顺利进入路由,否则就进入登录页面,路由配置如下: cons ...