点分治

还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对。

如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的点)

但是对于这道题,如果我们还要这样求的话显然是会超时的,意外要枚举所有点的话有点勉强 。。。

考虑一次把重心的子树全部遍历,统计到重心的距离,放进数组中,排序。然后我们可以用指针对撞的方法,用l,r两个指针分别从前后开始扫描。

容易发现,当指针再l的位置时,如果我们记录距离排好序的数组rd[l] + rd[r] <= k, 那么我们可以直接统计答案(r-l),之后l++,如果rd[l] + rd[r] > k,那么我们就让r--。

但是这样并不是正确的答案,因为这样我们再同一个子树中距离小于等于k的点也被算进去了,我们需要再下一次分治处理子树重心之前减去他。

具体方法就是,我们再重心rt的子树u中,去找距离之和为k-2*dis(rt, u)的点对,答案减去它就行了。有个小技巧,我们可以直接把u距离自己的距离设置成dis(rt,u),这样的话我们还是可以在他的子树中查找距离为k的点对,实际上就是默认给每个点到u的距离都加了dis(rt,u)

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 60005;
int n, k, cnt, ans, rt, sum, tot, res, head[N], size[N], dis[N], rd[N];
bool vis[N];
struct Edge { int v, next, w; } edge[N<<2]; void addEdge(int a, int b, int c){
edge[cnt].v = b, edge[cnt].w = c, edge[cnt].next = head[a], head[a] = cnt ++;
} void dfs(int s, int fa){
int mp = 0;
size[s] = 1;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa || vis[u]) continue;
dfs(u, s);
size[s] += size[u];
mp = max(mp, size[u]);
}
mp = max(mp, sum - size[s]);
if(mp < ans) ans = mp, rt = s;
} void getDis(int s, int fa){
rd[++tot] = dis[s];
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa || vis[u]) continue;
dis[u] = dis[s] + edge[i].w;
getDis(u, s);
}
} int calc(int s, int w){
dis[s] = w;
tot = 0, getDis(s, 0);
sort(rd + 1, rd + tot + 1);
int l = 1, r = tot, ret = 0;
while(l <= r) rd[l] + rd[r] <= k ? (ret += r - l, l ++) : (r --);
return ret;
} void solve(int s){
res += calc(s, 0);
vis[s] = true;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(vis[u]) continue;
res -= calc(u, edge[i].w);
ans = INF, sum = size[u];
dfs(u, 0), solve(rt);
}
} int main(){ full(head, -1);
n = read();
for(int i = 0; i < n - 1; i ++){
int u = read(), v = read(), c = read();
addEdge(u, v, c), addEdge(v, u, c);
}
k = read();
ans = INF, sum = n;
dfs(1, 0), solve(rt);
printf("%d\n", res);
return 0;
}

洛谷P4178 Tree (算竞进阶习题)的更多相关文章

  1. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  2. BZOJ 3261 最大异或和(算竞进阶习题)

    可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...

  3. POJ1471 Tree/洛谷P4178 Tree

    Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...

  4. 洛谷P2045 K方格取数(算竞进阶习题)

    费用流 又是一道网络流的模型,对于这种费用与经过次数有关的边,我们经常把边拆成多条,比如这个题,第一次费用是x,第二次是0,我们就可以先把点拆成入点和出点,入点和出点又连两条边,第一条容量为1,费用为 ...

  5. 洛谷P1092 虫食算(算竞进阶习题)

    模拟+dfs 这个题就三行,搜索的话我们从右向左,从上到下.. 如果是在1,2行我们就直接枚举0-n所有数,但是到了第三行,最直接的就是填上这一列上前两行的数的和modN,在此基础上判断该填的数有没有 ...

  6. 洛谷P1074 靶形数独(算竞进阶习题)

    还是数独.. 比上一个多了个分数矩阵,其实没什么差别,但是数据好像水了许多... #include <bits/stdc++.h> #define INF 0x3f3f3f3f using ...

  7. BZOJ 1912 巡逻(算竞进阶习题)

    树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可 ...

  8. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...

  9. POJ 3667 Hotel(算竞进阶习题)

    线段树区间染色 题目要求最大的连续段的左端点,我们在查询的时候返回最左端即可,注意查找顺序,应该从左到右!! 另外这类染色的push_down其实比较简单,直接染成上一层的标记即可 push_up和连 ...

随机推荐

  1. 51nod“省选”模测第二场 B 异或约数和(数论分块)

    题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pai ...

  2. mysql innodb存储引擎和一些参数优化

    mysql 的innodb存储引擎是事务性引擎,支持acid.innodb支持版本控制和高并发的技术是svcc:需要重点注意:myisam只缓存索引,innodb缓存索引和数据:

  3. 通过ADB查看当前Activity

    cmd命令中输入:adb shell dumpsys activity activities 在一连串的输出中找到Runing activities com.android.settings是包名. ...

  4. 使用django 中间件在所有请求前执行功能

    django中间是一个轻级,低耦合的插件,用来改变全局的输入和输出. 一 如何使用中间件 定义中间件 注册中间件 # 这是一个中间件代码片段的说明,在各个位置的代码将在何时执行 def simple_ ...

  5. 关于C#传给视图的字符串带有Html转义字符的处理

    public class PageBarHelper//分页类 { public static string GetPageBar(string requestHref,int totalCount, ...

  6. MS SQL自定义函数IsNumeric

    判断字符串是否为纯数字,负数不算.如'00012','54585','1000' SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE FUN ...

  7. linux内核IDR机制详解【转】

    这几天在看Linux内核的IPC命名空间时候看到关于IDR的一些管理性质的东西,刚开始看有些迷茫,深入看下去豁然开朗的感觉,把一些心得输出共勉. 我们来看一下什么是IDR?IDR的作用是什么呢? 先来 ...

  8. 【PAT】B1016 部分A+B

    水题 以字符和字符串形式储存输入,比较,计算出两个个数的D的个数,用for循环拼成P,相加得出结果 #include<stdio.h> int main(){ char A[20],DA, ...

  9. LeetCode算法题-Degree of an Array(Java实现)

    这是悦乐书的第294次更新,第312篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第162题(顺位题号是697).给定一个由正整数组成的非空数组,该数组的度数被定义为任意 ...

  10. Python基础——0前言

    python虽然这几年才兴起,但是已经是一门“老”语言了. python的诞生历史也很有趣.Python的创始人为Guido van Rossum(龟叔).1989年圣诞节期间,在阿姆斯特丹,Guid ...