exam_relu_softmax_dnn

 '''
 문) bmi.csv 데이터셋을 이용하여 다음과 같이 DNN모델을 생성하시오.
    조건1> X,Y변수
        -> X변수 : height, weight 칼럼
        -> Y변수 : label 칼럼
     조건2> DNN Layer
         Hidden lyaer1 node 수 = 24개
         Hidden lyaer2 node 수 = 12개
     조건3> 1,000번 학습, 100 step 단위로 Cost 출력
     조건4> 분류정확도(Accuracy) 출력
 '''

 import pandas as pd
 import numpy as np
 import tensorflow as tf
 from sklearn import metrics
 from sklearn.model_selection import train_test_split

 bmi = pd.read_csv('../data/bmi.csv')
 print(bmi.info())

 # 칼럼 추출
 col = list(bmi.columns)
 print(col) 

 # x,y 변수 추출
 x_data = bmi[col[:2]] # x변수
 y_data = bmi[col[-1]] # y변수

 # x변수 정규화 안하면 - [ nan]
 def data_nor(data) :
     dmax = data.max()
     dmin = data.min()
     return (data - dmin) / (dmax- dmin)

 x_data = data_nor(x_data)
 print(x_data)

 # y변수 one-hot-encoding
 y_label = []
 for y in y_data :
     if y == "thin" : y_label.append([1,0,0])
     if y == "normal" : y_label.append([0,1,0])
     if y == "fat" : y_label.append([0,0,1])    

 y_data = np.array(y_label)
 print(y_data.shape) #(150, 3)
 print(y_data[:5]) # 앞부분 5개
 print(y_data[-5:]) # 뒷부분 5개 

 print(x_data.shape) # (20000, 2)
 print(y_data.shape) # (20000, 3)

 # train/test split
 train_x, test_x, train_y, test_y = train_test_split(
     x_data, y_data, test_size=0.2, random_state=123)

 # x, y변수 선언
 X  = tf.placeholder(tf.float32, [None, 2]) # 키와 몸무게
 Y = tf.placeholder(tf.float32, [None, 3]) # 정답 레이블

 ##############################
 ## DNN layers
 ##############################
 hidden1_nodes = 24
 hidden2_nodes = 12

 # Hidden layer1
 W1 = tf.Variable(tf.random_normal([2, hidden1_nodes])) # 1층:[X_in,out]
 b1 = tf.Variable(tf.random_normal([hidden1_nodes])) # [out]
 hidden1 = tf.nn.relu(tf.matmul(X, W1) + b1) # hidden1 output

 # Hidden layer2
 W2 = tf.Variable(tf.random_normal([hidden1_nodes, hidden2_nodes])) # 2층 :[in,out]
 b2 = tf.Variable(tf.random_normal([hidden2_nodes])) # [out]
 hidden2 = tf.nn.relu(tf.matmul(hidden1, W2) + b2) # hidden2 output 

 # Output layer
 W3 = tf.Variable(tf.random_normal([hidden2_nodes, 3])) # 3층 :[in,Y_out]
 b3 = tf.Variable(tf.random_normal([3])) # [out]
 model = tf.matmul(hidden2, W3) + b3 # output model
 '''
 node 수 = layer 증가에 따라서 node수 증가, 출력층에 가까울 수록 node수 감소
 '''

 # 2. cost function : softmax + cross entropy
 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
                                 logits=model, labels=Y))

 # 3. 경사감소법 알고리즘  : step=0.01
 train= tf.train.GradientDescentOptimizer(0.01).minimize(cost)

 # 4. 결과 확인
 predict = tf.argmax(model, 1) # model 예측치 - 가장 높은 확률 index 반환
 label = tf.argmax(Y, 1) # Y변수 1 index 반환 

 ## 세션 생성
 with tf.Session() as sess :
     sess.run(tf.global_variables_initializer())

     ## 분류모델 학습
     for step in range(1000): # 500번 학습[0.93] - 1000번 학습[0.96]
         feed_data = {X: train_x, Y: train_y}
         _, cost_val = sess.run([train, cost], feed_dict=feed_data)

         if (step+1) % 100 == 0:
             print('step=', step+1, 'cost=', cost_val) 

     # Accuracy report
     feed_data = {X: test_x, Y: test_y}
     predicted, y_label = sess.run([predict,label], feed_dict=feed_data )

     print("\n Predicted:\n", predicted)
     print("\n y label:\n", y_label)   

     acc = metrics.accuracy_score(y_label, predicted)
     print('accuracy = ', acc)

 '''
  Predicted:
  [0 2 1 ... 2 2 0]

  y label:
  [0 2 1 ... 2 1 0]
 accuracy =  0.86125
 '''

step01_relu_softmax_ann

 # -*- coding: utf-8 -*-
 """
 ANN Model
   - 1개 은닉층을 갖는 분류기
   - input layer(4개) : matmul(X * w)
   - hidden layer(3 node) : relu()
   - output layer(3 domin) : softmax()
 """

 import tensorflow as tf
 import numpy as np
 from sklearn.datasets import load_iris
 from sklearn.model_selection import train_test_split
 from sklearn import metrics

 iris = load_iris()

 x_data = iris.data # 4개
 y_data = iris.target # 1개 

 print(y_data) # 0, 1, 2 -> [1, 0, 0]

 # x변수 정규화(0~1)
 def data_nor(data) :
     dmax = data.max()
     dmin = data.min()
     return (data - dmin) / (dmax - dmin)

 # 함수 호출
 x_data = data_nor(x_data)

 # one hot encoding
 y_label = [] # 빈list
 for y in y_data :
     if y == 0 : y_label.append([1,0,0])
     if y == 1 : y_label.append([0,1,0])
     if y == 2 : y_label.append([0,0,1])

 y_data = np.array(y_label)

 # X,Y,w,b 변수 정의
 X = tf.placeholder(tf.float32, [None, 4]) # 2차원
 Y = tf.placeholder(tf.float32, [None, 3]) # 2차원

 #########################
 ### ANN Layers
 #########################
 hidden_nodes = 3 # node=유닛=뉴런

 # Hidden layer
 w1 = tf.Variable(tf.random_normal([4, hidden_nodes])) # [input, output]
 b1 = tf.Variable(tf.random_normal([hidden_nodes])) # node == b

 # Output layer
 w2 = tf.Variable(tf.random_normal([hidden_nodes, 3])) # [input, output]
 b2 = tf.Variable(tf.random_normal([3])) # [final output]

 # 1. model  : (X * w1) + b1
 model = tf.matmul(X, w1) + b1

 # 2. hidden layer : relu()
 hidden_output = tf.nn.relu(model)

 # 3. output layer : softmax()
 final_model = tf.matmul(hidden_output, w2) + b2

 # 4. cost = softmax + entropy
 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
         logits = final_model, labels = Y))

 # 5. 경사하강법
 train = tf.train.AdamOptimizer(0.01).minimize(cost)

 # 6. 결과 확인
 predict = tf.arg_max(model, 1) #  [0.98, 0.01, 0.01]-> 0 최댓값의 index 반환
 label = tf.arg_max(Y, 1) # [1, 0, 0] -> 0

 with tf.Session() as sess :
     sess.run(tf.global_variables_initializer()) # w,b 초기화 

     feed_data = {X : x_data, Y : y_data} # 학습용 

     for step in range(1000) :
         _, cost_val = sess.run([train, cost], feed_dict = feed_data)

         if ((step+1) % 100 == 0):
             print('step=', (step+1), 'cost =', cost_val)

     # 최적화 model test
     #feed_data = {X : test_x, Y : test_y} # 평가용 

     predict_re, label_re = sess.run([predict, label], feed_dict = feed_data)

     # T/F -> 1/0 -> mean
     acc = tf.reduce_mean(tf.cast(tf.equal(predict_re, label_re), tf.float32))
     print('accuracy =', sess.run(acc, feed_dict = feed_data))
     # accuracy = 0.97333336

     print('predict=', predict_re)
     print('label=', label_re)
     

step02_relu_sotfmax_dnn

 # -*- coding: utf-8 -*-
 """
 DNN Model
   - Input layer : 4개
   - Hidden layer(2개)
     -> H1(12)
     -> H2(6)
   - Output layer : 3개(domain)
 """

 import tensorflow as tf
 import numpy as np
 from sklearn.datasets import load_iris
 from sklearn.model_selection import train_test_split
 from sklearn import metrics

 iris = load_iris()

 x_data = iris.data # 4개
 y_data = iris.target # 1개 

 print(y_data) # 0, 1, 2 -> [1, 0, 0]

 # x변수 정규화(0~1)
 def data_nor(data) :
     dmax = data.max()
     dmin = data.min()
     return (data - dmin) / (dmax - dmin)

 # 함수 호출
 x_data = data_nor(x_data)

 # one hot encoding
 y_label = [] # 빈list
 for y in y_data :
     if y == 0 : y_label.append([1,0,0])
     if y == 1 : y_label.append([0,1,0])
     if y == 2 : y_label.append([0,0,1])

 y_data = np.array(y_label)

 # train/test split(8:2)
 train_x, test_x, train_y, test_y = train_test_split(
     x_data, y_data, test_size=0.2, random_state=123)

 # X,Y,w,b 변수 정의
 X = tf.placeholder(tf.float32, [None, 4]) # 2차원
 Y = tf.placeholder(tf.float32, [None, 3]) # 2차원

 ######################
 ## DNN Layers
 ######################
 hidden1_nodes = 12
 hidden2_nodes = 6 # 출력층에 가까울 수록 Node 수 감소 

 # Hidden layer1 : 1층[input, H1]
 w1 = tf.Variable(tf.random_normal([4, hidden1_nodes])) # [input, output]
 b1 = tf.Variable(tf.random_normal([hidden1_nodes]))
 hidden1_output = tf.nn.relu(tf.matmul(X, w1) + b1)

 # Hidden layer2 : 2층[H1 -> OUT]
 w2 = tf.Variable(tf.random_normal([hidden1_nodes, hidden2_nodes]))
 b2 = tf.Variable(tf.random_normal([hidden2_nodes]))
 hidden2_output = tf.nn.relu( tf.matmul(hidden1_output, w2) + b2)

 # Output layer : 3층[H2 -> domain]
 w3 = tf.Variable(tf.random_normal([hidden2_nodes, 3]))
 b3 = tf.Variable(tf.random_normal([3]))
 model = tf.matmul(hidden2_output, w3) + b3

 # 4. cost = softmax + entropy
 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
         logits = model, labels = Y))

 # 5. 경사하강법
 train = tf.train.AdamOptimizer(0.01).minimize(cost)

 # 6. 결과 확인
 predict = tf.arg_max(model, 1) #  [0.98, 0.01, 0.01]-> 0 최댓값의 index 반환
 label = tf.arg_max(Y, 1) # [1, 0, 0] -> 0

 with tf.Session() as sess :
     sess.run(tf.global_variables_initializer()) # w,b 초기화 

     feed_data = {X : x_data, Y : y_data} # 학습용 

     for step in range(1000) :
         _, cost_val = sess.run([train, cost], feed_dict = feed_data)

         if ((step+1) % 100 == 0):
             print('step=', (step+1), 'cost =', cost_val)

     # 최적화 model test
     #feed_data = {X : test_x, Y : test_y} # 평가용 

     predict_re, label_re = sess.run([predict, label], feed_dict = feed_data)

     # T/F -> 1/0 -> mean
     acc = tf.reduce_mean(tf.cast(tf.equal(predict_re, label_re), tf.float32))
     print('accuracy =', sess.run(acc, feed_dict = feed_data))
     # accuracy = 0.9866667

     print('predict=', predict_re)
     print('label=', label_re)

python DNN的更多相关文章

  1. DNN的BP算法Python简单实现

    BP算法是神经网络的基础,也是最重要的部分.由于误差反向传播的过程中,可能会出现梯度消失或者爆炸,所以需要调整损失函数.在LSTM中,通过sigmoid来实现三个门来解决记忆问题,用tensorflo ...

  2. 通过Python包来剪枝、蒸馏DNN

    用 Distiller 压缩 PyTorch 模型 作者: PyTorch 中文网发布: 2018年7月15日 5,101阅读 0评论 近日,Intel 开源了一个用于神经网络压缩的开源 Python ...

  3. DNN网络(三)python下用Tensorflow实现DNN网络以及Adagrad优化器

    摘自: https://www.kaggle.com/zoupet/neural-network-model-for-house-prices-tensorflow 一.实现功能简介: 本文摘自Kag ...

  4. python pytorch numpy DNN 线性回归模型

    1.直接奉献代码,后期有入门更新,之前一直在学的是TensorFlow, import torch from torch.autograd import Variable import torch.n ...

  5. python多种格式数据加载、处理与存储

    多种格式数据加载.处理与存储 实际的场景中,我们会在不同的地方遇到各种不同的数据格式(比如大家熟悉的csv与txt,比如网页HTML格式,比如XML格式),我们来一起看看python如何和这些格式的数 ...

  6. Python之路【第七篇续】:I/O多路复用

    回顾原生Socket 一.Socket起源: socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,对于文件用[打开][读写][关闭]模式来操作. socket就是该模式的 ...

  7. 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类

    30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...

  8. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  9. 【读书笔记与思考】《python数据分析与挖掘实战》-张良均

    [读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...

随机推荐

  1. ML笔记-sklearn.classification_report

    主要用于显示主要分类指标的文本报告,在报告中显示每个类的精确度.召回率.F1等信息 首先数据测试结果分为以下4种情况: TP:预测为正,实现为正 FP:预测为正,实现为负 FN:预测为负,实现为正 T ...

  2. 服务器配置 ssl 证书

    最近因为公司的 服务器 ssl证书即将到期(服务器 和 ssl证书管理都在 腾讯云上), 所以为了能顺利的 重新申请 ssl证书 ,我和小伙伴 在他的个人服务器上尝试了一波(我们居然都不会 ...) ...

  3. centos7 部署安装gitlab服务器

    概念: git 是一种版本控制系统,是一个命令,是一种工具 gitlib 是用于实现git功能的开发库 github 是一个基于git实现的在线代码托管仓库,包含一个网站界面,向互联网开放 gitla ...

  4. 从Docker 到Jenkins 到Ansible的部署经验

    从Docker 到Jenkins 到Ansible的部署经验 工作中,除了开发功能,还负责系统的部署工作.我从频繁的部署工作中,逐渐找到了一些偷懒的方法.从传统的Java -jar命令启动服务,到通过 ...

  5. Tomcat系列(2)——Tomcat文件目录7个

    核心部分 bin (运行脚本) conf (配置文件) lib (核心库文件) logs (日志目录) temp (临时目录) webapps (自动装载的应用程序的目录) work (JVM临时文件 ...

  6. 【Unity游戏开发】UGUI不规则区域点击的实现

    一.简介 马三从上一家公司离职了,最近一直在出去面试,忙得很,所以这一篇博客拖到现在才写出来.马三在上家公司工作的时候,曾处理了一个UGUI不规则区域点击的问题,制作过程中也有一些收获和需要注意坑,因 ...

  7. JGUI源码:组件及函数封装方法(7)

    以Accordion为例1.在base.js定义一个对象,这样可以和JQuery对象区分开,用户使用组件时比较清晰一点,也可以在这里引用多个库. var JGUI = J = { version : ...

  8. What is the difference between __str__ and __repr__ in Python

    from https://www.pythoncentral.io/what-is-the-difference-between-__str__-and-__repr__-in-python/ 目的 ...

  9. 多项式求导系列——OO Unit1分析和总结

    一.摘要 本文是BUAA OO课程Unit1在课程讲授.三次作业完成.自测和互测时发现的问题,以及倾听别人的思路分享所引起个人的一些思考的总结性博客.本文第二部分介绍三次作业的设计思路,主要以类图的形 ...

  10. [置顶]Python开发之路

    阅读目录   第一篇:python入门 第二篇:数据类型.字符编码.文件处理 第三篇:函数 第四篇:模块与包 第五篇:常用模块 第六篇:面向对象 第七篇:面向对象高级 第八篇:异常处理 第九篇:网络编 ...