http://acm.hdu.edu.cn/showproblem.php?pid=5452

题意:

有一个连通的图G,先给出图中的一棵生成树,然后接着给出图中剩余的边,现在要删除最少的边使得G不连通,并且在生成树中必须且只能删除一条边。

思路:

最简单的情况是G就是给出的生成树,这种情况下删除任何一条边都可以。

枚举每一条树边,如果该边的子节点没有非树边,那么删除这条边就可以使图非连通,如果有非树边,那么就要把非树边删去,当然,子节点之内的非树边不用删,要删的是连出去的非树边。

这样一来,对每个顶点记录非树边的度数,表示要删除的情况,但是如果在一棵子树内怎么办呢?此时就会多算,求得它们的lca,在该顶点上度数-2,也就是减去这条边。最后dfs一遍即可。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = +; int n,m,tot,Log,ans;
int head[maxn],degree[maxn],deep[maxn];
int p[maxn][],cut[maxn]; struct node
{
int v,next;
}e[*+]; void addEdge(int u, int v)
{
e[tot].v = v;
e[tot].next = head[u];
head[u] = tot++;
} void dfs(int u, int fa, int d)
{
deep[u]=d;
p[u][]=fa;
for(int i=head[u];i!=-;i=e[i].next)
{
int v=e[i].v;
if(v==fa) continue;
dfs(v,u,d+);
}
} void init()
{
for(int j=;j<=Log;j++)
for(int i=;i<=n;i++)
p[i][j]=p[p[i][j-]][j-];
} int LCA(int x, int y)
{
if(x==y) return x;
if(deep[x]<deep[y]) swap(x,y);
for(int i=Log;i>=;i--)
{
if(deep[p[x][i]]>=deep[y])
x=p[x][i];
}
if(x==y) return x;
for(int i=Log;i>=;i--)
{
if(p[x][i]!=p[y][i])
{
x=p[x][i];y=p[y][i];
}
}
return p[x][];
} void solve(int u, int fa)
{
cut[u] = degree[u];
for(int i=head[u];i!=-;i=e[i].next)
{
int v = e[i].v;
if(v==fa) continue;
solve(v,u);
cut[u]+=cut[v];
}
ans = min(ans, cut[u]);
} int main()
{
//freopen("in.txt","r",stdin);
int T;
int kase = ;
scanf("%d",&T);
while(T--)
{
tot = ;
memset(head,-,sizeof(head));
memset(degree,,sizeof(degree));
scanf("%d%d",&n,&m);
for(int i=;i<=n-;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
} dfs(,-,);
for(Log=;(<<Log)<=n+;Log++);
Log--;
init(); for(int i=;i<=m-n+;i++)
{
int u,v;
scanf("%d%d",&u,&v);
degree[u]++;
degree[v]++;
int lca = LCA(u,v);
degree[lca] -= ;
} ans = 0x3f3f3f3f;
solve(,-);
printf("Case #%d: %d\n",++kase,ans+);
}
return ;
}

HDU 5452 Minimum Cut(LCA)的更多相关文章

  1. HDU 5452 Minimum Cut (Spaning Tree)

    生成树的上的一个非根结点对应一条生成树上的边,然后这个结点的子树上连出去的边就对应去掉这条边的割, 然后就可以对树外的边求LCA,在LCA上标记,利用这个信息可以算出有多少条边在子树上,以及有多少条边 ...

  2. Hdu 5452 Minimum Cut (2015 ACM/ICPC Asia Regional Shenyang Online) dfs + LCA

    题目链接: Hdu 5452 Minimum Cut 题目描述: 有一棵生成树,有n个点,给出m-n+1条边,截断一条生成树上的边后,再截断至少多少条边才能使图不连通, 问截断总边数? 解题思路: 因 ...

  3. hdu 5452 Minimum Cut 树形dp

    Minimum Cut Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...

  4. HDU 5452——Minimum Cut——————【树链剖分+差分前缀和】ACdream 1429——Diversion——————【树链剖分】

    Minimum Cut Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Tota ...

  5. HDU 5452 Minimum Cut

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5452题目大意: 给你一个图G,图中包含一颗生成树.要求只能删除生成树内的一条边,使得图不联通.问最小的删除 ...

  6. HDU 5938 Four Operations(四则运算)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  7. 洛谷P3379 【模板】最近公共祖先(LCA)

    P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...

  8. HDU 5775 Bubble Sort(冒泡排序)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  9. 图论--最近公共祖先问题(LCA)模板

    最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...

随机推荐

  1. How to use CAR FANS C800 Diagnostic Scan Tool to do diagnosis operation

    How to use Heavy Duty Diagnostic CAR FANS C800 Diagnostic Scan Tool to do diagnosis operation Here i ...

  2. 【新架构测试】Fiddler转发数据测试

    跨域转发设置: 首先进行设置, AutoResponder--> 选中Enable rules和Unmatched requests passthrough 然后Import...导入fiddl ...

  3. MySQL SELECT练习题*28

    -- (1)用子查询查询员工“张小娟”所做的订单信息. SELECT * FROM order_master WHERE saler_no = ( SELECT employee_no FROM em ...

  4. centos7.2 开机启动脚本

    vim ~/.bashrc 然后最后一行添加 source /etc/profile 一.添加开机自启服务 在CentOS 7中添加开机自启服务非常方便,只需要两条命令(以Jenkins为例):sys ...

  5. Sort aborted Error in MySQL Error Log

    现象 [ERROR] lines containing "Sort aborted" are present in the MySQL error log file. [Warni ...

  6. Yii笔记:打印sql、Form表单、时间插件、Mysql的 FIND_IN_SET函数使用、是否是post/ajax请求

    语句部分: yii1版本打印最后一条执行的SQL: $this->getDbConnection()->createCommand()->select()->from()-&g ...

  7. 用Java实现MVPtree——MVPtree点集内去重以及衍生出来的多维向量Hash问题

    上次完成了MVPtree之后,客户又提出了MVPtree点集元素重复的问题,希望我将元素去重. 集合去重哪家强?java.util找HashSet!如果不计较元素顺序,放进去基本就没有重复元素了. 只 ...

  8. Java线程安全容器

    一.Java同步容器 同步容器是用来解决并发情况下的容器线程安全问题的.给多线程环境准备一个线程安全的容器对象. 线程安全的容器对象: Vector, Hashtable.线程安全容器对象,都是使用s ...

  9. Spring Boot(六):如何使用mybatis

    Spring Boot(六):如何使用mybatis orm框架的本质是简化编程中操作数据库的编码,发展到现在基本上就剩两家了,一个是宣称可以不用写一句SQL的hibernate,一个是可以灵活调试动 ...

  10. PyTorch 使用心得

    PyTorch 使用心得 模板 import torch.nn as nn import torch.optim as optim class Model(nn.Module): def __init ...