题目描述

Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。速度变化太快使得游客们很不舒服,因此从一个景点前往另一个景点的时候,大家都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。

输入输出格式

输入格式:

第一行包含两个正整数,N和M。

接下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向公路,车辆必须以速度v在该公路上行驶。

最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。

输出格式:

如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。

输入输出样例

输入样例#1: 复制

4 2
1 2 1
3 4 2
1 4
输出样例#1: 复制

IMPOSSIBLE
输入样例#2: 复制

3 3
1 2 10
1 2 5
2 3 8
1 3
输出样例#2: 复制

5/4
输入样例#3: 复制

3 2
1 2 2
2 3 4
1 3
输出样例#3: 复制

2

要求所经过的路程的最大权值尽可能小   最小权值尽可能大  使得 最大权值/最小权值  最小        
可以先将所有边从小到大排序好
然后枚举最小权值i 然后j从i开始往m遍历 (当遍历过程中正好联通时立刻退出 (贪心原理) ) 犯了一个巨大错误:如果不是全局变量一定要初始化 我因为没有初始化然后wa的点每次都不一样!!!!!
还有就是注意细节
排序的思想很好
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 6000+6
int f[N]; int gcd(int x,int y)
{
return y==?x:gcd(y,x%y);
} int find1(int x)
{
return x==f[x]?x:f[x]=find1(f[x]);
}
void union1(int a,int b)
{
int x=find1(a);
int y=find1(b);
if(x!=y)
f[x]=y;
} struct node
{
int s,e,len; }edge[N]; bool cmp(node a,node b)
{
return a.len<b.len;
} int main()
{
int n,m;
RII(n,m); rep(i,,m)
RIII(edge[i].s,edge[i].e,edge[i].len);
int s,e;
RII(s,e); int ans1=,ans2=;
sort(edge+,edge++m,cmp);
rep(i,,m)
{
rep(j,,n)
f[j]=j;
int j;
for(j=i;j<=m;j++)
{
if(find1(edge[j].s)==find1(edge[j].e))continue;
union1(edge[j].s,edge[j].e);
if(find1(s)==find1(e))break;
}
if(i==&&(find1(s)!=find1(e)) )
{
printf("IMPOSSIBLE");
return ;
}
if(find1(s)!=find1(e))break;
if(ans1*edge[i].len>=ans2*edge[j].len)
ans1=edge[j].len,ans2=edge[i].len;
}
int x=gcd(ans1,ans2);
if (x==ans2) printf("%d\n",ans1/ans2); else printf("%d/%d\n",ans1/x,ans2/x);
}

P2502 [HAOI2006]旅行 并查集的更多相关文章

  1. P2502 [HAOI2006]旅行——暴力和并查集的完美结合

    P2502 [HAOI2006]旅行 一定要看清题目数据范围再决定用什么算法,我只看着是一个蓝题就想到了记录最短路径+最小生成树,但是我被绕进去了: 看到只有5000的边,我们完全可以枚举最小边和最大 ...

  2. P2502 [HAOI2006]旅行

    P2502 [HAOI2006]旅行有些问题光靠直觉是不靠谱的,必须有简单的证明,要么就考虑到所有情况.这个题我想的是要么见最小生成树,要么建最大生成树,哎,我sb了一种很简单的情况就能卡掉在最小生成 ...

  3. 洛谷P2502[HAOI2006]旅行

    题目: Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,-,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也许 ...

  4. luogu题解P2502[HAOI2006]旅行--最小生成树变式

    题目链接 https://www.luogu.org/problemnew/show/P2502 分析 一个很\(naive\)的做法是从\(s\)到\(t\)双向BFS这当然会TLE 这时我就有个想 ...

  5. luogu P2502 [HAOI2006]旅行

    传送门 边数只有5000,可以考虑\(O(m^2)\)算法,即把所有边按边权升序排序,然后依次枚举每条边\(i\),从这条边开始依次加边,加到起点和终点在一个连通块为止.这个过程可以用并查集维护.那么 ...

  6. BZOJ 1050 旅行(并查集)

    很好的一道题.. 首先把边权排序.然后枚举最小的边,再依次添加不小于该边的边,直到s和t联通.用并查集维护即可. # include <cstdio> # include <cstr ...

  7. P2502 [HAOI2006]旅行 最小生成树

    思路:枚举边集,最小生成树 提交:1次 题解:枚举最长边,添加较小边. #include<cstdio> #include<iostream> #include<algo ...

  8. BZOJ 1050: [HAOI2006]旅行comf( 并查集 )

    将edge按权值排序 , O( m² ) 枚举边 , 利用并查集维护连通信息. ------------------------------------------------------------ ...

  9. BZOJ 1050: [HAOI2006]旅行comf(枚举+并查集)

    [HAOI2006]旅行comf Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点 ...

随机推荐

  1. Python中crypto模块进行AES加密和解密

    #coding: utf8 import sys from Crypto.Cipher import AES from binascii import b2a_hex, a2b_hex class p ...

  2. luogu P2515 [HAOI2010]软件安装

    传送门 看到唯一的依赖关系,容易想到树型dp,即\(f_{i,j}\)表示选点\(i\)及子树内连通的点,代价为\(j\)的最大价值,然后就是选课那道题 但是要注意 1.题目中的依赖关系不一定是树,可 ...

  3. [转]Linux/Windows下脚本对拍程序

    [新]简单写法 (转载自:https://blog.csdn.net/ylsoi/article/details/79824655) 要求:文件输入输出,且输入输出文件需要对应 Linux: #inc ...

  4. Python中的元类

    从前面"Python对象"文章中了解到,在Python中一切都是对象,类可以创建实例对象,但是类本身也是对象. class C(object): pass c = C() prin ...

  5. Django 自定义过滤器和模板标签

    前提:自定义模板标签和过滤器必须位于Django的某个应用中,这个应用可以包含一个templatetags目录, 和models.py views.py 处于同一级目录.若这个templatetags ...

  6. [转]VS2015 Git 源码管理工具简单入门

    VS2015 Git 源码管理工具简单入门   1.VS Git插件 1.1 环境 VS2015+GitLab 1.2 Git操作过程图解 1.3 常见名词解释 拉取(Pull):将远程版本库合并到本 ...

  7. Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again

    # yum install -y vim Loaded plugins: fastestmirror, presto Loading mirror speeds from cached hostfil ...

  8. S5PV210 PWM定时器

    第一节 S5PV210的PWM定时器S5PV210共有5个32bit的PWM定时器,其中定时器0.1.2.3有PWM功能,定时器4没有输出引脚.PWM定时器使用PCLK_PSYS作为时钟源,相关知识可 ...

  9. 解执行maven项目出现 SLF4J: Failed to load class “org.slf4j.impl.StaticLoggerBinder”. error

    最近再弄maven项目,运行起来没有问题,但是Console控制台会报错,比如说如下的问题异常提示: 由此我们可以看出,报出错误的地方主要是slf4j的jar包,而故障码中“Failed to loa ...

  10. Spring boot教程mybatis访问MySQL的尝试

    Windows 10家庭中文版,Eclipse,Java 1.8,spring boot 2.1.0,mybatis-spring-boot-starter 1.3.2,com.github.page ...