题意

求解递推式 \(f(n)=a_1*f(n-1)+a_2*f(n-2)+....+a_d*f(n-d)\) 的第 \(n\) 项模以 \(m\)。

\(1 \leq n \leq 2^{31}-1\)

\(1 \leq m \leq 46340\)

\(1 \leq d \leq 15\)

思路

矩阵乘法最经典的运用之一。先大致介绍一下矩阵乘法:

对于一个矩阵 \(A_{np}\) ,另一个矩阵 \(B_{pm}\) ,设它们的乘积为 \(C_{n,m}\) ,有 \(C_{i,j}=\displaystyle\sum_{k=1}^pA_{i,k}B_{k,j}\) .

例如对于一个矩阵 \(\begin{pmatrix}a_{1,1}&a_{1,2}&a_{1,3}\\a_{2,1}&a_{2,2}&a_{2,3}\end{pmatrix}​\) ,和另一个矩阵 \(\begin{pmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\b_{3,1}&b_{3,2}\end{pmatrix}​\) ,它们的积为:

\[\begin{pmatrix}
a_{1,1}b_{1,1}+a_{1,2}b_{2,1}+a_{1,3}b_{3,1} & a_{1,1}b_{1,2}+a_{1,2}b_{2,2}+a_{1,3}b_{3,2}\\
a_{2,1}b_{1,1}+a_{2,2}b_{2,1}+a_{2,3}b_{3,1} & a_{2,1}b_{1,2}+a_{2,2}b_{2,2}+a_{2,3}b_{3,2}
\end{pmatrix}
\]

从定义式可以看出来,矩阵乘法不满足交换律,但满足结合律。满足结合律,就说明了可以快速幂。

矩阵乘法的题目的根本想法是构造矩阵。对于这道题,可以先构造出矩阵 \(A_{1d}\) ,分别表示数列 \(f\) 的前 \(d\) 项,那么只需要再构造出一个 \(B_{dd}\) ,使得 \(A_{1d}B_{dd}\) 得到 \(f\) 数列的第 \(2\) 项到第 \(d+1\) 项即可。具体构造见代码:

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=20;
int P;
struct Matrix
{
int n,m,a[N][N];
int *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;
res.n=n,res.m=_.m;
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)(res[i][j]+=(a[i][k]*_.a[k][j])%P)%=P;
}
return res;
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
};
int n,d; Matrix Pow(Matrix a,int p)
{
Matrix res;res.resize(a.n,a.n);
FOR(i,1,res.n)FOR(j,1,res.m)res[i][j]=(i==j); //res初始值是一个"单位1"的矩阵
for(;p>0;p>>=1,a*=a)if(p&1)res*=a;
return res;
} int main()
{
while(scanf("%d%d%d",&d,&n,&P),d|n|P)
{
Matrix A,B;A.resize(1,d),B.resize(d,d);
FOR(i,1,d)FOR(j,1,d-1)B[i][j]=(i==j+1);
FOR(i,1,d)scanf("%d",&B[d-i+1][d]),B[d-i+1][d]%=P;
FOR(i,1,d)scanf("%d",&A[1][i]),A[1][i]%=P;
if(n<=d)printf("%d\n",A[1][n]);
else
{
A*=Pow(B,n-d);
printf("%d\n",A[1][d]);
}
}
return 0;
}

UVA 10870 Recurrences(矩阵乘法)的更多相关文章

  1. UVA 10870 - Recurrences(矩阵高速功率)

    UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...

  2. UVa 10870 Recurrences (矩阵快速幂)

    题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...

  3. UVA - 10870 Recurrences 【矩阵快速幂】

    题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...

  4. 矩阵快速幂 UVA 10870 Recurrences

    题目传送门 题意:f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,求f (n) % m.训 ...

  5. UVa 10870 - Recurrences

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. uva 10870 递推关系矩阵快速幂模

    Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ...

  7. UVa 10870 & 矩阵快速幂

    题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...

  8. UVA - 12183 :Top Secret(N^2的循环矩阵乘法)

    pro:N个数排成一圈.一次操作为,每个位置的数+=L*左+R*右,保留x为整数. 问S轮操作后每个位置的值. N<=1000,S<=2^30,x<=9 . sol:不难想到矩阵乘法 ...

  9. 矩阵乘法优化DP复习

    前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...

随机推荐

  1. File §2

    Previously speaking,File can be seen as one ducument, also can be seen as list of documents like dir ...

  2. 10 分钟速成 Python3

    Python 是由吉多·范罗苏姆(Guido Van Rossum)在 90 年代早期设计. 它是如今最常用的编程语言之一.它的语法简洁且优美,几乎就是可执行的伪代码. 注意:这篇教程是基于 Pyth ...

  3. GUI常用对话框5

    %输入对话框 name = inputdlg('请输入姓名','实例'); ret = inputdlg({'请输入姓名','请输入性别'},'实例') %一个输入表中多行输入 %留言对话框 info ...

  4. Python中*args和**kwargs 的简单使用

    # 在函数定义中使用*args和kwargs传递可变长参数. *args用作传递非命名键值可变长参数列表(位置参数); kwargs用作传递键值可变长参数列表# *args表示任何多个无名参数,它是一 ...

  5. Django后端项目---- Rest Framework(2)

    一.认证(补充的一个点) 认证请求头 #!/usr/bin/env python # -*- coding:utf-8 -*- from rest_framework.views import API ...

  6. Django后端项目----restful framework 认证源码流程

    一.请求到来之后,都要先执行dispatch方法,dispatch方法方法根据请求方式的不同触发get/post/put/delete等方法 注意,APIView中的dispatch方法有很多的功能 ...

  7. mysql03

    查询的列不在同一表中必须使用连接内连接,外链接 -- 输出学生姓名以及对应的年级名称 内连接 select studentName,gradeName from student inner join ...

  8. 计算概论(A)/基础编程练习2(8题)/6:数组逆序重放

    #include<stdio.h> int main() { // 输入n个整数 ; scanf("%d", &n); // 循环读入元素 while(scan ...

  9. nginx 下 php 无法执行,虚拟主机 无法使用

    检查目录下的.ini文件 有可能是因为多了个user.ini文件.这个文件在linux下可用,在window下不可用. windows下删掉这个文件后记得重启一下nginx.不然不会生效. 参考:ht ...

  10. 20165310 NstSec2019 Week3 Exp1 逆向与Bof基础

    20165310 NstSec2019 Week3 Exp1 逆向与Bof基础 一.实验内容 实验目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用fo ...