UVA 10870 Recurrences(矩阵乘法)
题意
求解递推式 \(f(n)=a_1*f(n-1)+a_2*f(n-2)+....+a_d*f(n-d)\) 的第 \(n\) 项模以 \(m\)。
\(1 \leq n \leq 2^{31}-1\)
\(1 \leq m \leq 46340\)
\(1 \leq d \leq 15\)
思路
矩阵乘法最经典的运用之一。先大致介绍一下矩阵乘法:
对于一个矩阵 \(A_{np}\) ,另一个矩阵 \(B_{pm}\) ,设它们的乘积为 \(C_{n,m}\) ,有 \(C_{i,j}=\displaystyle\sum_{k=1}^pA_{i,k}B_{k,j}\) .
例如对于一个矩阵 \(\begin{pmatrix}a_{1,1}&a_{1,2}&a_{1,3}\\a_{2,1}&a_{2,2}&a_{2,3}\end{pmatrix}\) ,和另一个矩阵 \(\begin{pmatrix}b_{1,1}&b_{1,2}\\b_{2,1}&b_{2,2}\\b_{3,1}&b_{3,2}\end{pmatrix}\) ,它们的积为:
a_{1,1}b_{1,1}+a_{1,2}b_{2,1}+a_{1,3}b_{3,1} & a_{1,1}b_{1,2}+a_{1,2}b_{2,2}+a_{1,3}b_{3,2}\\
a_{2,1}b_{1,1}+a_{2,2}b_{2,1}+a_{2,3}b_{3,1} & a_{2,1}b_{1,2}+a_{2,2}b_{2,2}+a_{2,3}b_{3,2}
\end{pmatrix}
\]
从定义式可以看出来,矩阵乘法不满足交换律,但满足结合律。满足结合律,就说明了可以快速幂。
矩阵乘法的题目的根本想法是构造矩阵。对于这道题,可以先构造出矩阵 \(A_{1d}\) ,分别表示数列 \(f\) 的前 \(d\) 项,那么只需要再构造出一个 \(B_{dd}\) ,使得 \(A_{1d}B_{dd}\) 得到 \(f\) 数列的第 \(2\) 项到第 \(d+1\) 项即可。具体构造见代码:
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=20;
int P;
struct Matrix
{
int n,m,a[N][N];
int *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;
res.n=n,res.m=_.m;
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)(res[i][j]+=(a[i][k]*_.a[k][j])%P)%=P;
}
return res;
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
};
int n,d;
Matrix Pow(Matrix a,int p)
{
Matrix res;res.resize(a.n,a.n);
FOR(i,1,res.n)FOR(j,1,res.m)res[i][j]=(i==j); //res初始值是一个"单位1"的矩阵
for(;p>0;p>>=1,a*=a)if(p&1)res*=a;
return res;
}
int main()
{
while(scanf("%d%d%d",&d,&n,&P),d|n|P)
{
Matrix A,B;A.resize(1,d),B.resize(d,d);
FOR(i,1,d)FOR(j,1,d-1)B[i][j]=(i==j+1);
FOR(i,1,d)scanf("%d",&B[d-i+1][d]),B[d-i+1][d]%=P;
FOR(i,1,d)scanf("%d",&A[1][i]),A[1][i]%=P;
if(n<=d)printf("%d\n",A[1][n]);
else
{
A*=Pow(B,n-d);
printf("%d\n",A[1][d]);
}
}
return 0;
}
UVA 10870 Recurrences(矩阵乘法)的更多相关文章
- UVA 10870 - Recurrences(矩阵高速功率)
UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...
- UVa 10870 Recurrences (矩阵快速幂)
题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- 矩阵快速幂 UVA 10870 Recurrences
题目传送门 题意:f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,求f (n) % m.训 ...
- UVa 10870 - Recurrences
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- uva 10870 递推关系矩阵快速幂模
Recurrences Input: standard input Output: standard output Consider recurrent functions of the follow ...
- UVa 10870 & 矩阵快速幂
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...
- UVA - 12183 :Top Secret(N^2的循环矩阵乘法)
pro:N个数排成一圈.一次操作为,每个位置的数+=L*左+R*右,保留x为整数. 问S轮操作后每个位置的值. N<=1000,S<=2^30,x<=9 . sol:不难想到矩阵乘法 ...
- 矩阵乘法优化DP复习
前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...
随机推荐
- C# WPF Halcon HDevEngine混合编程
1. WPF+Halcon 引用halcondotnet.dll和hdevenginedotnet.dll XAML中导入命名空间xmlns:halcon=”clr-namespace:HalconD ...
- jQuery属性--html([val|fn])、text([val|fn])和val([val|fn|arr])
html([val|fn]) 概述 取得第一个匹配元素的html内容,这个函数不能用于XML文档.但可以用于XHTML文档. 在一个 HTML 文档中, 我们可以使用 .html() 方法来获取任意一 ...
- scrapy:get cookie from response
scrapy shell fetch('your_url') response.headers.getlist("Set-Cookie")https://stackoverflow ...
- 关于SqlCommand对象的2个方法:ExecuteNonQuery 方法和ExecuteScalar方法
1.SqlCommand.ExecuteNonQuery 方法 对连接执行 Transact-SQL 语句并返回受影响的行数. 语法:public override int ExecuteNonQue ...
- 使用Oozie中workflow的定时任务重跑hive数仓表的历史分期调度
在数仓和BI系统的开发和使用过程中会经常出现需要重跑数仓中某些或一段时间内的分区数据,原因可能是:1.数据统计和计算逻辑/口径调整,2.发现之前的埋点数据收集出现错误或者埋点出现错误,3.业务数据库出 ...
- flask 重定向到上一个页面,referrer、next参数
重定向会上一个页面 在某些场景下,我们需要在用户访问某个url后重定向会上一个页面,比如用户点击某个需要登录才能访问的连接,这时程序会重定向到登录页面,当用户登录后比较合理的行为是重定向到用户登录前浏 ...
- sql之left join、right join、inner join的区别,连接自己时的查询结果测试
sql之left join.right join.inner join的区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括 ...
- 新建git并将本地代码上传到分支
1 查看远程分支 $ git branch -a * br-2.1.2.2 master remotes/origin/HEAD -> origin/master remotes/origin/ ...
- MySQL SELECT练习题*28
-- (1)用子查询查询员工“张小娟”所做的订单信息. SELECT * FROM order_master WHERE saler_no = ( SELECT employee_no FROM em ...
- linux+nginx+mysql+php环境下,安装ecshop
我们在工作过程中要经常和电商打交道,所以,学会安装ecshop是必须的. 下面我们来介绍一下ecshop的安装. nginx和php安装整合,在我前面的文章中有提到,这里就不做赘述了.mysql可以使 ...