题目链接

Update:这种分块写法...可以被卡掉啊...

好像没有靠谱的树分块写法...

/*
对树上节点进行分块,每个点记录dep,fa,val,Max,Sum,Max,Sum表示当前点在该块内的子树中权值最大值与和
节点i各值表示从root[i]到i一段路径的的对应值。因为求值时应是向上找到LCA,所以记录一个从根到叶的信息
修改一个点i时影响的只是该块内从fa[i]以下的点,暴力向下更新
查询路径时不断向上找LCA。注意每次都是让深度大的跳,以避免分类讨论
当两个点在一个块内时暴力一步步向上 直到LCA
存两组边,一是原图中的边,二是每个块内的关系边
*/
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
#define gc() getchar()
const int N=3e4+5,INF=0x3f3f3f3f; int n,limit,val[N],rt[N],dep[N],fa[N],Max[N],Sum[N],Enum,H[N],nxt[N<<1],to[N<<1]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
void AddEdge(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
} void Build(int x,int &res)
{
if(res) rt[x]=rt[fa[x]],--res;
else rt[x]=x,res=limit;
for(int i=H[x];i;i=nxt[i])
if(to[i]!=fa[x])
dep[to[i]]=dep[x]+1,fa[to[i]]=x,Build(to[i],res);
}
void Update(int x,int Mx,int Sm)
{
Sm+=val[x], Sum[x]=Sm;
Mx=std::max(Mx,val[x]), Max[x]=Mx;
for(int i=H[x];i;i=nxt[i])
if(rt[x]==rt[to[i]] && to[i]!=fa[x])
Update(to[i],Mx,Sm);
}
int Query(int x,int y,bool f)
{
int sm=0,mx=-INF;
while(rt[x]!=rt[y])//不在同一块时直接用整块的信息
{
if(dep[x]<dep[y]) std::swap(x,y);
if(dep[rt[x]]<dep[rt[y]]) std::swap(x,y);
mx=std::max(mx,Max[x]), sm+=Sum[x];
x=fa[rt[x]];
}
while(x!=y)//在同一个块内,不能直接用整块的信息,一步步跳
{
if(dep[x]<dep[y]) std::swap(x,y);
mx=std::max(mx,val[x]), sm+=val[x];
x=fa[x];
}
// while(x!=y)
// {
// if(dep[x]<dep[y]) std::swap(x,y);
// if(rt[x]==rt[y])//在同一个块内,不能直接用整块的信息,一步步跳
// {
// mx=std::max(mx,val[x]), sm+=val[x];
// x=fa[x];
// }
// else
// {
// if(dep[rt[x]]<dep[rt[y]]) std::swap(x,y);
// mx=std::max(mx,Max[x]), sm+=Sum[x];
// x=fa[rt[x]];
// }
// }
mx=std::max(mx,val[x]), sm+=val[x];//Don't forget!!
return f?mx:sm;
} int main()
{
n=read(),limit=pow(n,0.45);
// limit=sqrt(n);
for(int u,v,i=1;i<n;++i) u=read(),v=read(),AddEdge(u,v);
for(int i=1;i<=n;++i) Max[i]=val[i]=read();
int res=0;
Build(1,res);
for(int i=1;i<=n;++i)
if(rt[i]==i) Update(i,val[i],0);
int q=read(),u,v;char s[7];
while(q--)
{
scanf("%s",s),u=read(),v=read();
if(s[0]=='C')
{
val[u]=v;
if(u==rt[u]) Update(u,val[u],0);//显然不能从上一块更新
else Update(u,Max[fa[u]],Sum[fa[u]]);//是从当前节点更新,not fa[u]!fa[u]的Sum这样就多了
}
else if(s[1]=='M') printf("%d\n",Query(u,v,1));
else printf("%d\n",Query(u,v,0));
} return 0;
}

洛谷.2590.[ZJOI2008]树的统计(树分块)的更多相关文章

  1. 洛谷P2607 [ZJOI2008]骑士(基环树)

    传送门 首先这是一个有$n$个点$n$条边的图(据大佬们说这玩意儿叫做基环树?) 不难(完全没有)发现每个连通块里最多只有一个环 那么找到这个环,然后把它断开,再对它的两个端点分别跑树形dp 设$dp ...

  2. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  3. 洛谷——P2590 [ZJOI2008]树的统计(树链剖分模板练手)

    P2590 [ZJOI2008]树的统计 I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 III. QSUM u v: 询问 ...

  4. 洛谷P2590 [ZJOI2008] 树的统计 [树链剖分]

    题目传送门 树的统计 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t ...

  5. 洛谷P5069 [Ynoi2015]纵使日薄西山(树状数组,set)

    洛谷题目传送门 一血祭 向dllxl致敬! 算是YNOI中比较清新的吧,毕竟代码只有1.25k. 首先我们对着题意模拟,寻找一些思路. 每次选了一个最大的数后,它和它周围两个数都要减一.这样无论如何, ...

  6. 洛谷P3372 【模板】线段树 1

    P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...

  7. 洛谷P2617 Dynamic Ranking(主席树,树套树,树状数组)

    洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真 ...

  8. 洛谷P4891 序列(势能线段树)

    洛谷题目传送门 闲话 考场上一眼看出这是个毒瘤线段树准备杠题,发现实在太难调了,被各路神犇虐哭qwq 考后看到各种优雅的暴力AC......宝宝心里苦qwq 思路分析 题面里面是一堆乱七八糟的限制和性 ...

  9. BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第 ...

随机推荐

  1. Kaggle 泰坦尼克

    入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据 ...

  2. spring mvc常用配置

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  3. WiFi基本知识【转】

    转自:http://blog.csdn.net/myarrow/article/details/7930131 1. IE802.11简介 标准号 IEEE 802.11b IEEE 802.11a ...

  4. HTML表格的简单使用1

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. AndroidStudio、gradle、buildToolsVersion关系

    使用AndroidStudio 开发也已经2年了,每次gradle 或者studio 有推荐更新后,项目重新sync后都会报错,提示更新相应的其他版本,比如AndroidStudio.gradle.b ...

  6. css之margin

    参考地址:http://www.imooc.com/learn/680 标准盒模型 元素尺寸 可视尺寸-clientWidth(标准)——就是上图中的border box包含的尺寸. 占据尺寸-out ...

  7. n个月后兔子的个数问题(for循环)

  8. Z-index研究 opacity和z-index一起使用

    Z-index研究 opacity和z-index一起使用   关于z-index的真正问题是,很少有人理解它到底是怎么用.其实它并不复杂,但是如果你从来没有花一定时间去看具体的z-index相关文档 ...

  9. 【ES】学习4-结构化搜索

    1. 结构化搜索得到的结果只有是和否,没有相似概念. term可以实现精确值查询 curl -XGET 'localhost:9200/logstash-cowrie/_search?pretty' ...

  10. java控制语句 if-else while do-while for return break continue goto switch default

    if for //: object/ForEachFloat.java package object; import java.util.Random; public class ForEachFlo ...