目前电脑配置:Ubuntu 16.04 + GTX1080显卡

配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择。尤其是今天发现conda install -c menpo opencv3 一句命令就可以顺畅的安装上opencv,之前自己装的时候也遇到了很多错误。conda 安装 Tensorflow 和 Pytorch两种框架也是非常方便的,对于不擅长源码编译的我是最佳选择没错了。

所以大致流程就是:安装显卡驱动——安装CUDA 8.0——安装cuDNN——安装miniconda——安装各种计算包

命令如下:

安装驱动

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt-get update

sudo apt-get install nvidia-367

sudo apt-get install mesa-common-dev

sudo apt-get install freeglut3-dev

重启系统让GTX1080显卡驱动生效

下载cuda 8.0 run文件

sudo sh cuda_8.0.61_375.26_linux.run

q快进跳过,提示是否安装xxxx选择n

配置环境变量至~/.bashrc

export PATH=/usr/local/cuda-8.0/bin/:$PATH

export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64"

安装cuDNN比较简单,解压后把相应的文件拷贝到对应的CUDA目录下即可

sudo cp cudnn.h /usr/local/cuda/include/  #复制头文件

sudo cp lib* /usr/local/cuda/lib64/  #复制动态链接库

sudo rm -rf libcudnn.so libcudnn.so.6           #删除原有动态文件

sudo ln -s libcudnn.so.6.0.21 libcudnn.so.6     #生成软链接

sudo ln -s libcudnn.so.6 libcudnn.so            #生成软链接

安装miniconda

配置清华源

下载miniconda(python3.6)

bash Miniconda3-latest-Linux-x86_64.sh

安装tensorflow-gpu版

conda install -y  tensorflow-gpu==1.4.1

pytorch官网安装很简单就不写了

Ubuntu深度学习环境搭建 tensorflow+pytorch的更多相关文章

  1. 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0

    目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu ...

  2. 保姆级教程——Ubuntu16.04 Server下深度学习环境搭建:安装CUDA8.0,cuDNN6.0,Bazel0.5.4,源码编译安装TensorFlow1.4.0(GPU版)

    写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些 ...

  3. Win10+RTX2080深度学习环境搭建:tensorflow、mxnet、pytorch、caffe

    目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 ...

  4. [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建

    这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...

  5. linux系统下深度学习环境搭建和使用

    作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启 ...

  6. 深度学习环境搭建部署(DeepLearning 神经网络)

    工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...

  7. 深度学习环境搭建常用网址、conda/pip命令行整理(pytorch、paddlepaddle等环境搭建)

    前言:最近研究深度学习,安装了好多环境,记录一下,方便后续查阅. 1. Anaconda软件安装 1.1 Anaconda Anaconda是一个用于科学计算的Python发行版,支持Linux.Ma ...

  8. (通用)深度学习环境搭建:tensorflow安装教程及常见错误解决

    区别于其他入门教程的"手把手式",本文更强调"因"而非"果".我之所以加上"通用"字样,是因为在你了解了这个开发环境之后 ...

  9. 深度学习环境搭建(CUDA9.0 + cudnn-9.0-linux-x64-v7 + tensorflow_gpu-1.8.0 + keras)

    关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K ...

随机推荐

  1. fw-cloud-framework项目配置、启动问题

    1.config组件:其配置优先级高于每个注册到同一个中心的工程的本地配置,所以在统一以dev这个 profile启动各个项目时,去config中心中找-dev结尾的各个工程名命名的文件. confi ...

  2. LuoguP2257 YY的GCD

    题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于 ...

  3. (转)Multi-Object-Tracking-Paper-List

    Multi-Object-Tracking-Paper-List 2018-08-07 22:18:05 This blog is copied from: https://github.com/Sp ...

  4. Sublime Text 查找时排除指定的文件夹或文件

    Sublime Text 查找时排除指定的文件夹或文件 Ctrl + Shift + F这组快捷键可以调出 Sublime Text 的查找替换窗口,里边有一栏 Where,可以做一些高级设置:d:\ ...

  5. 20165306 预备作业3 Linux安装及学习

    查看了许多教程,VirtualBox和Ubuntu已安装完成.以下为学习Linux基础入门课程的实验报告.实验截图.尚未解决的问题及体会. 实验三 用户及文件权限管理 一.Linux用户管理 (一)查 ...

  6. 常用markdown语法入门

    入门markdown常用基本语法,简单到让你怀疑人生~~ 不说废话,直接上图(如果图片显示不清晰,建议选中图片右键——在新标签页中打开图片,妥妥的呢!!) (左侧黑色背景为markdown语法,右侧为 ...

  7. ASP.NET开发总结

    ASP.NET的界面可以是.aspx,会对应有一个.aspx.cs的逻辑处理文件,.aspx的所有控件对应着变量,变量名就是控件的ID. 为了代码编写方便起见,一般将数据库表的新增字段,放在最后. 日 ...

  8. struct和typedef struct用法和区别

    1 首先://注意在C和C++里不同 1.1 在C中定义一个结构体类型要用typedef: typedef struct Student { int a; }Stu; 于是在声明变量的时候就可:Stu ...

  9. uoj #228. 基础数据结构练习题 线段树

    #228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...

  10. C++图形开发相关

    1. WxWidgets 2. GTK+ 3. U++ Framework 4. QT