caffe中大多数层用C++写成。 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记。 这时候就需要用python 写一个输入层。

如在fcn 的voc_layers.py 中 有两个类:

VOCSegDataLayer

SBDDSegDataLayer

分别包含:setup,reshape,forward, backward, load_image, load_label. 不需要backward 没有参数更新。

import caffe

import numpy as np
from PIL import Image import random class VOCSegDataLayer(caffe.Layer):
"""
Load (input image, label image) pairs from PASCAL VOC
one-at-a-time while reshaping the net to preserve dimensions. Use this to feed data to a fully convolutional network.
""" def setup(self, bottom, top):
"""
Setup data layer according to parameters: - voc_dir: path to PASCAL VOC year dir
- split: train / val / test
- mean: tuple of mean values to subtract
- randomize: load in random order (default: True)
- seed: seed for randomization (default: None / current time) for PASCAL VOC semantic segmentation. example params = dict(voc_dir="/path/to/PASCAL/VOC2011",
mean=(104.00698793, 116.66876762, 122.67891434),
split="val")
"""
# config
params = eval(self.param_str)
self.voc_dir = params['voc_dir']
self.split = params['split']
self.mean = np.array(params['mean'])
self.random = params.get('randomize', True)
self.seed = params.get('seed', None) # two tops: data and label
if len(top) != 2:
raise Exception("Need to define two tops: data and label.")
# data layers have no bottoms
if len(bottom) != 0:
raise Exception("Do not define a bottom.") # load indices for images and labels
split_f = '{}/ImageSets/Segmentation/{}.txt'.format(self.voc_dir,
self.split)
self.indices = open(split_f, 'r').read().splitlines()
self.idx = 0 # make eval deterministic
if 'train' not in self.split:
self.random = False # randomization: seed and pick
if self.random:
random.seed(self.seed)
self.idx = random.randint(0, len(self.indices)-1) def reshape(self, bottom, top):
# load image + label image pair
self.data = self.load_image(self.indices[self.idx])
self.label = self.load_label(self.indices[self.idx])
# reshape tops to fit (leading 1 is for batch dimension)
top[0].reshape(1, *self.data.shape)
top[1].reshape(1, *self.label.shape) def forward(self, bottom, top):
# assign output
top[0].data[...] = self.data
top[1].data[...] = self.label # pick next input
if self.random:
self.idx = random.randint(0, len(self.indices)-1)
else:
self.idx += 1
if self.idx == len(self.indices):
self.idx = 0 def backward(self, top, propagate_down, bottom):
pass def load_image(self, idx):
"""
Load input image and preprocess for Caffe:
- cast to float
- switch channels RGB -> BGR
- subtract mean
- transpose to channel x height x width order
"""
im = Image.open('{}/JPEGImages/{}.jpg'.format(self.voc_dir, idx))
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= self.mean
in_ = in_.transpose((2,0,1))
return in_ def load_label(self, idx):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
im = Image.open('{}/SegmentationClass/{}.png'.format(self.voc_dir, idx))
label = np.array(im, dtype=np.uint8)
label = label[np.newaxis, ...]
return label class SBDDSegDataLayer(caffe.Layer):
"""
Load (input image, label image) pairs from the SBDD extended labeling
of PASCAL VOC for semantic segmentation
one-at-a-time while reshaping the net to preserve dimensions. Use this to feed data to a fully convolutional network.
""" def setup(self, bottom, top):
"""
Setup data layer according to parameters: - sbdd_dir: path to SBDD `dataset` dir
- split: train / seg11valid
- mean: tuple of mean values to subtract
- randomize: load in random order (default: True)
- seed: seed for randomization (default: None / current time) for SBDD semantic segmentation. N.B.segv11alid is the set of segval11 that does not intersect with SBDD.
Find it here: https://gist.github.com/shelhamer/edb330760338892d511e. example params = dict(sbdd_dir="/path/to/SBDD/dataset",
mean=(104.00698793, 116.66876762, 122.67891434),
split="valid")
"""
# config
params = eval(self.param_str)
self.sbdd_dir = params['sbdd_dir']
self.split = params['split']
self.mean = np.array(params['mean'])
self.random = params.get('randomize', True)
self.seed = params.get('seed', None) # two tops: data and label
if len(top) != 2:
raise Exception("Need to define two tops: data and label.")
# data layers have no bottoms
if len(bottom) != 0:
raise Exception("Do not define a bottom.") # load indices for images and labels
split_f = '{}/{}.txt'.format(self.sbdd_dir,
self.split)
self.indices = open(split_f, 'r').read().splitlines()
self.idx = 0 # make eval deterministic
if 'train' not in self.split:
self.random = False # randomization: seed and pick
if self.random:
random.seed(self.seed)
self.idx = random.randint(0, len(self.indices)-1) def reshape(self, bottom, top):
# load image + label image pair
self.data = self.load_image(self.indices[self.idx])
self.label = self.load_label(self.indices[self.idx])
# reshape tops to fit (leading 1 is for batch dimension)
top[0].reshape(1, *self.data.shape)
top[1].reshape(1, *self.label.shape) def forward(self, bottom, top):
# assign output
top[0].data[...] = self.data
top[1].data[...] = self.label # pick next input
if self.random:
self.idx = random.randint(0, len(self.indices)-1)
else:
self.idx += 1
if self.idx == len(self.indices):
self.idx = 0 def backward(self, top, propagate_down, bottom):
pass def load_image(self, idx):
"""
Load input image and preprocess for Caffe:
- cast to float
- switch channels RGB -> BGR
- subtract mean
- transpose to channel x height x width order
"""
im = Image.open('{}/img/{}.jpg'.format(self.sbdd_dir, idx))
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= self.mean
in_ = in_.transpose((2,0,1))
return in_ def load_label(self, idx):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
import scipy.io
mat = scipy.io.loadmat('{}/cls/{}.mat'.format(self.sbdd_dir, idx))
label = mat['GTcls'][0]['Segmentation'][0].astype(np.uint8)
label = label[np.newaxis, ...]
return label

  

对于 最终的loss 层:

在prototxt 中定义的layer:

layer {
type: 'Python' #python
name: 'loss' # loss 层
top: 'loss'
bottom: 'ipx'
bottom: 'ipy'
python_param { module: 'pyloss' # 写在pyloss 文件中 layer: 'EuclideanLossLayer' # 对应此类的名字
}
# set loss weight so Caffe knows this is a loss layer
loss_weight: 1
}

  

loss 层的实现 :

import caffe
import numpy as np class EuclideanLossLayer(caffe.Layer):
"""
Compute the Euclidean Loss in the same manner as the C++ EuclideanLossLayer
to demonstrate the class interface for developing layers in Python.
""" def setup(self, bottom, top):# top是最后的loss, bottom 中有两个值,一个网络的输出, 一个是label。
# check input pair
if len(bottom) != 2:
raise Exception("Need two inputs to compute distance.") def reshape(self, bottom, top):
# check input dimensions match
if bottom[0].count != bottom[1].count:
raise Exception("Inputs must have the same dimension.")
# difference is shape of inputs
self.diff = np.zeros_like(bottom[0].data, dtype=np.float32)
# loss output is scalar
top[0].reshape(1) def forward(self, bottom, top):
self.diff[...] = bottom[0].data - bottom[1].data
top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2. def backward(self, top, propagate_down, bottom):
for i in range(2):
if not propagate_down[i]:
continue
if i == 0:
sign = 1
else:
sign = -1
bottom[i].diff[...] = sign * self.diff / bottom[i].num

  

caffe 中 python 数据层的更多相关文章

  1. caffe添加python数据层

    caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward ...

  2. caffe中python接口的使用

    下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对 ...

  3. caffe中关于数据进行预处理的方式

    caffe的数据层layer中再载入数据时,会先要对数据进行预处理.一般处理的方式有两种: 1. 使用均值处理 transform_param { mirror: true crop_size: me ...

  4. (原)torch和caffe中的BatchNorm层

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索. caffe中batchNorm层是通过Batc ...

  5. 【撸码caffe 五】数据层搭建

    caffe.cpp中的train函数内声明了一个类型为Solver类的智能指针solver: // Train / Finetune a model. int train() { -- shared_ ...

  6. caffe中添加local层

    下载caffe-local,解压缩; 修改makefile.config:我是将cuudn注释掉,去掉cpu_only的注释; make all make test(其中local_test出错,将文 ...

  7. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  8. 3. caffe中 python Notebook

    caffe官网上的example中的例子,如果环境配对都能跑出来,接下来跑Notobook Example中的程序,都是python写的,这些程序会让你对如何使用caffe解决问题有个初步的了解(ht ...

  9. caffe中的BatchNorm层

    在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "co ...

随机推荐

  1. HTML5 & how to download SVG in js

    HTML5 & how to download SVG in js how to download SVG in js http://dinbror.dk/blog/how-to-downlo ...

  2. 核化主成分分析(Kernel PCA)应用及调参

    核化这个概念在很多机器学习方法中都有应用,如SVM,PCA等.在此结合sklearn中的KPCA说说核函数具体怎么来用. KPCA和PCA都是用来做无监督数据处理的,但是有一点不一样.PCA是降维,把 ...

  3. Django-website 程序案例系列-18 多表跨表操作优化

    详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化 在数据库有外键的时候,使用 select_related() 和 pref ...

  4. AGC005F Many Easy Problems(NTT)

    先只考虑求某个f(k).考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数.再考虑转换为计算每条边不被包含的方案数.这仅当所选点都在该边的同一侧.于是可得f(k)=C(n,k)+ΣC(n,k ...

  5. POJ3252-RoundNumbers-排列组合

    当一个数的二进制表示中,0的个数大于或等于1的个数时,叫做RoundNumber.求从S到F两个数(包含)之间的RoundNumber个数. 这类题一般都是先求出0到N的个数,然后两个相减. 由于题目 ...

  6. VMware vCenter 6.0 安装及群集配置介绍

    一.介绍 VMware vCenter Server 提供了一个可伸缩.可扩展的平台,为虚拟化管理奠定了基础.可集中管理VMware vSphere环境,与其他管理平台相比,极大地提高了 IT 管理员 ...

  7. windows 系统无法安装

    1. 提示windows 无法安装到这个磁盘,选中的磁盘具有MBR分区表. Windows cannot be installed to this disk.the selected disk has ...

  8. 使用selenium模拟登陆oschina

    Selenium把元素定位接口封装得更简单易用了,支持Xpath.CSS选择器.以及标签名.标签属性和标签文本查找. from selenium.webdriver import PhantomJS ...

  9. GO调度模型的缺点

    记一次latency问题排查:谈Go的公平调度的缺陷 http://baijiahao.baidu.com/s?id=1587897390639953806&wfr=spider&fo ...

  10. protobuf for java

    本文档为java编程人员使用protocol buffer提供了一个基本的介绍,通过一个简单的例程进行介绍.通过本文,你可以了解到如下信息: 1.在一个.proto文件中定义一个信息格式. 2.使用p ...