题目传送门

  传送点I

  传送点II

  传送点III

题目大意

  给定一颗基环树,要求删去其中一条边,使得剩下的图形是一棵树,并且最长路的长度最短,求最长路的最短长度。

  路径可以分为两部分:跨过环 和 在树内部。

  要删除一条边,使图形变为一棵树,那么只能删去环上的一条边,因此,我们无法改变第二部分的路径,但是可以改变第一部分。

  对于第二部分可以通过两次搜索或者树形动态规划解决。

  对于第一部分,考虑枚举删去环上的一条边。但是发现仍然不太方便处理,因为不好维护环上的信息。仍然考虑剖环成链。

  假设环的大小为$k$,从剖点开始依次将所有点标号1到$k$。

  当一条边被删除后,第二部分可能成为答案的情况有两种:

  1. 不跨过剖点和被删边的路径
  2. 跨过剖点但不经过被删边的路径

  因此考虑维护一些数组。

  1. 在$1, 2, \cdots, i$及其所在的树中的最长路。
  2. 从$1$开始,到$1, 2, \cdots, i$及其所在的树中的最长路。
  3. 在$k, k - 1, \cdots, i$及其所在的树中的最长路。
  4. 从$k$开始,到$k, k - 1, \cdots, i$及其所在的树中的最长路。

  这四个部分都可以线性预处理出来。然后枚举删掉的环边就能统计第一部分的答案。

Code

 /**
* Codeforces
* Problem#835F
* Accepted
* Time: 155ms
* Memory: 27100k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean; typedef class Edge {
public:
int ed, nx, w; Edge(int ed = , int nx = , int w = ):ed(ed), nx(nx), w(w) { }
}Edge; typedef class MapManager {
public:
int ce;
int* h;
Edge* es; MapManager() { }
MapManager(int n, int m):ce(-) {
h = new int[(n + )];
es = new Edge[(m + )];
memset(h, -, sizeof(int) * (n + ));
} void addEdge(int u, int v, int w) {
es[++ce] = Edge(v, h[u], w);
h[u] = ce;
} Edge& operator [] (int pos) {
return es[pos];
}
}MapManager; #define ll long long const signed ll llf = (signed ll) ((~0ull) >> ); int n;
int ccir, cc;
MapManager g;
stack<int> s;
boolean *vis, *icir;
int *cir, *nw;
ll *ap[], *cp[], *dep, *dis; inline void init() {
scanf("%d", &n);
vis = new boolean[(n + )];
icir = new boolean[(n + )];
cir = new int[(n + )];
nw = new int[(n + )];
dep = new ll[(n + )];
dis = new ll[(n + )];
for (int i = ; i < ; i++) {
ap[i] = new ll[(n + )];
cp[i] = new ll[(n + )];
}
g = MapManager(n, n << );
memset(vis, false, sizeof(boolean) * (n + ));
memset(icir, false, sizeof(boolean) * (n + ));
for (int i = , u, v, w; i <= n; i++) {
scanf("%d%d%d", &u, &v, &w);
g.addEdge(u, v, w);
g.addEdge(v, u, w);
}
} boolean getLoop(int p, int fa) {
if (vis[p]) {
ccir = ;
int cur = ;
do {
cur = s.top();
s.pop();
icir[cur] = true;
cir[ccir++] = cur;
cc = ccir - ;
} while (cur != p);
return true;
}
vis[p] = true;
s.push(p);
for (int i = g.h[p]; ~i; i = g[i].nx) {
int e = g[i].ed;
if (e == fa) continue;
if (getLoop(e, p)) {
if (icir[p]) {
nw[cc] = g[i].w;
cc = (cc + ) % ccir;
}
return true;
}
}
s.pop();
return false;
} void dfs(int p, int fa, ll dep, int& fn, ll& fd) {
if (dep > fd)
fd = dep, fn = p;
for (int i = g.h[p]; ~i; i = g[i].nx) {
int e = g[i].ed;
if (e == fa || icir[e]) continue;
dfs(e, p, dep + g[i].w, fn, fd);
}
} inline void solve() {
getLoop(, );
ll fixedd = ;
// for (int i = 0; i < ccir; i++)
// cerr << cir[i] << " ";
// cerr << endl;
// for (int i = 0; i < ccir; i++)
// cerr << nw[i] << " ";
// cerr << endl;
for (int i = , fn, fbn; i < ccir; i++) {
fn = -, dep[i] = ;
dep[i] = , dfs(cir[i], , , fn, dep[i]);
if (~fn)
icir[cir[i]] = false, dfs(fn, , , fbn, fixedd), icir[cir[i]] = true;
}
dis[] = ;
for (int i = ; i < ccir; i++)
dis[i] = nw[i - ];
for (int i = ; i < ccir; i++)
dis[i] += dis[i - ];
ll mi = dep[];
ap[][] = -llf, cp[][] = dep[];
for (int i = ; i < ccir; i++) {
ap[][i] = max(ap[][i - ], dep[i] + dis[i] + mi);
mi = max(mi, dep[i] - dis[i]);
cp[][i] = max(cp[][i - ], dep[i] + dis[i]);
}
mi = dep[ccir - ] + dis[ccir - ];
ap[][ccir - ] = -llf, cp[][ccir - ] = dep[ccir - ];
for (int i = ccir - ; ~i; i--) {
ap[][i] = max(ap[][i + ], dep[i] - dis[i] + mi);
mi = max(mi, dep[i] + dis[i]);
cp[][i] = max(cp[][i + ], dep[i] + dis[ccir - ] - dis[i]);
}
ll ans = ap[][ccir - ];
for (int i = ; i < ccir - ; i++)
ans = min(max(max(ap[][i], ap[][i + ]), cp[][i] + cp[][i + ] + nw[ccir - ]), ans);
printf(Auto, max(ans, fixedd));
} int main() {
init();
solve();
return ;
}

Codeforces 835F Roads in the Kingdom - 动态规划的更多相关文章

  1. Codeforces 835F Roads in the Kingdom (环套树 + DP)

    题目链接 Roads in the Kingdom 题意  给出一个环套树的结构,现在要删去这个结构中的一条边,满足所有点依然连通. 删边之后的这个结构是一棵树,求所有删边情况中树的直径的最小值. 显 ...

  2. 【CodeForces】835F Roads in the Kingdom

    一.题目 题目描述 王国有\(n\)座城市与\(n\)条有长度的街道,保证所有城市直接或间接联通,我们定义王国的直径为所有点对最短距离中的最大值,现因财政危机需拆除一条道路并同时要求所有城市仍然联通, ...

  3. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  4. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...

  5. codeforces 427 div.2 F. Roads in the Kingdom

    F. Roads in the Kingdom time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. Roads in the Kingdom CodeForces - 835F (直径)

    大意: 给定一个基环树, 求删除一条环上的边使得直径最小. 直径分两种情况 环上点延伸的树内的直径 两个环上点的树内深度最大的点匹配 第一种情况直接树形dp求一下, 第二种情况枚举删除的环边, 线段树 ...

  7. codeforces:Roads in the Kingdom分析和实现

    题目大意:国家有n个城市,还有n条道路,每条道路连通两个不同的城市,n条道路使得所有n个城市相互连通.现在国家经费不足,要关闭一条道路.国家的不便度定义为国家中任意两个不同的城市之间的距离的最大值,那 ...

  8. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. Codeforces 581F Zublicanes and Mumocrates - 树形动态规划

    It's election time in Berland. The favorites are of course parties of zublicanes and mumocrates. The ...

随机推荐

  1. iOS 新浪微博-5.2 首页微博列表_转发微博/工具栏

    继续于上一篇,还是做首页的功能,这一篇把剩下的首页继续完善. 看看上面的图片,分析: 1.转发微博里面的内容,和原创微博是一样的,由文字+配图组成.这应该放在一个UIView里处理. 2.工具栏也当成 ...

  2. 关于linux中SSH爆破总结

    2.思路 (1)对root账号进行暴力破解 (2)使用中国姓名top1000作为用户名进行暴力破解 (3)使用top 10000 password字典进行密码破解 (4)利用掌握信息进行社工信息整理并 ...

  3. Codeforces Round #402 D String Game(二分)

    [题目类型]二分答案 &题解: 只要你想到二分答案就不是难题了,但我当时确实是想不到. [时间复杂度]\(O(nlogn)\) &代码: #include <cstdio> ...

  4. c# 调试模式下Swaggerf附加接口参数

    c# 调试模式下Swaggerf附加接口参数,如:每个接口Header中附加参数appId 1.新增过滤器: public class GlobalHttpHeaderFilter : IOperat ...

  5. efcore从数据库快速生成实体及context

    有些项目开发时先建立数据库,再用codefirst来书写entity和EntityConfiguration,比较耗费功夫. 1.在vs2017中新建个asp.net core的web项目,或者其他项 ...

  6. html5-css边框img

    div{    width: 500px;    height: 300px;    background: rgb(122,30,60);    border:15px solid black;   ...

  7. Firefox 功能笔记

    1.复制标签 说明:复制标签功能即新开一个与当前页一样的标签页,这个功能在Chrome中点击标签右键复制即可,但是在firefox中没有 Firefox中实现:Ctrl+拖动标签页

  8. Linux基础命令---显示域名ypdomainname

    ypdomainname   ypdomainname指令显示由函数“getdomainname”返回的主机域名,使用这个指令也可以设置一个主机NIS/YP域名. 此命令的适用范围:RedHat.RH ...

  9. 20165316 实验四 Android程序设计

    20165316 孙勖哲 第四次实验 Android 程序设计1 参考 http://www.cnblogs.com/rocedu/p/6371315.html#SECANDROID, 安装 Andr ...

  10. oracle函数,游标,视图使用总结

    oracle函数或者叫存储过程,在实际的开发过程中对于复杂的业务需求是非常有用的,非常有效率的也是非常好玩儿的一个技术点. 平常在开发过程中对于CRUD功能较多.一般SQL即可应付,大不了就是长一点而 ...