Planning
time limit per test

1 second

memory limit per test

512 megabytes

input

standard input

output

standard output

Helen works in Metropolis airport. She is responsible for creating a departure schedule. There are n flights that must depart today, the i-th of them is planned to depart at the i-th minute of the day.

Metropolis airport is the main transport hub of Metropolia, so it is difficult to keep the schedule intact. This is exactly the case today: because of technical issues, no flights were able to depart during the first k minutes of the day, so now the new departure schedule must be created.

All n scheduled flights must now depart at different minutes between (k + 1)-th and (k + n)-th, inclusive. However, it's not mandatory for the flights to depart in the same order they were initially scheduled to do so — their order in the new schedule can be different. There is only one restriction: no flight is allowed to depart earlier than it was supposed to depart in the initial schedule.

Helen knows that each minute of delay of the i-th flight costs airport ci burles. Help her find the order for flights to depart in the new schedule that minimizes the total cost for the airport.

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 300 000), here n is the number of flights, and k is the number of minutes in the beginning of the day that the flights did not depart.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 107), here ci is the cost of delaying the i-th flight for one minute.

Output

The first line must contain the minimum possible total cost of delaying the flights.

The second line must contain n different integers t1, t2, ..., tn (k + 1 ≤ ti ≤ k + n), here ti is the minute when the i-th flight must depart. If there are several optimal schedules, print any of them.

Example
input
5 2
4 2 1 10 2
output
20
3 6 7 4 5
Note

Let us consider sample test. If Helen just moves all flights 2 minutes later preserving the order, the total cost of delaying the flights would be(3 - 1)·4 + (4 - 2)·2 + (5 - 3)·1 + (6 - 4)·10 + (7 - 5)·2 = 38 burles.

However, the better schedule is shown in the sample answer, its cost is (3 - 1)·4 + (6 - 2)·2 + (7 - 3)·1 + (4 - 4)·10 + (5 - 5)·2 = 20burles.

【题意】:
给出n(3e5),k(<=n),以及n个数ci(1e7). 
表示有n架飞机本需要在[1,n]时间内起飞,一分钟只能飞一架.但是现在[1,k]时间内并不能起飞,只能在[k+1,k+n]内起飞.ci序号为i的飞机起飞延误一分钟的cost.一个飞机不能比原定时间早起飞,请安排一个起飞顺序,求最小的cost和。

【分析】:

贪心证明

设序号为i的飞机起飞时间为di,则cost=∑(di-i)*ci=∑di*ci-∑i*ci
显然后一项为常数,而{di-k}为[1,n]的一个排列, 
所以只要使ci越大的i尽可能早起飞即可使得cost最小.

求解

对于每个[k+1,k+n]的时刻t,都会有一架飞机起飞, 
而可起飞的飞机只有原定起飞时刻在[1,t]内已经准备好的飞机.从这些飞机中选取ci最大的即可. 
维护一个优先队列.一次循环就可以得出结果.

【代码】:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
struct node{
int id,cost;
node(int id,int cost):id(id),cost(cost){};
bool operator<(const node& n)const{return cost<n.cost;}
};
int a[];
int main(){
int n,k;
priority_queue<node>q;
while(~scanf("%d%d",&n,&k)){
while(!q.empty()) q.pop();
int t;
ll sum=;
for(int i=;i<=n+k;i++){
if(i<=n){
scanf("%d",&t);
q.push(node(i,t));
}
if(i>k){
node tt=q.top();
q.pop();
sum+=(i-tt.id)*tt.cost;
a[tt.id]=i;
}
}
printf("%I64d\n",sum);
for(int i=;i<n;i++) printf("%d ",a[i]);
printf("%d\n",a[n]);
}
return ;
}
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
struct node{
int id,cost;
node(int id,int cost):id(id),cost(cost){};
bool operator<(const node& n)const{return cost<n.cost;}
};
int a[];
int main(){
int n,k;
priority_queue<node>q;
while(~scanf("%d%d",&n,&k)){
while(!q.empty()) q.pop();
int t;
ll sum=;
for(int i=;i<=n+k;i++){
if(i<=n){
scanf("%d",&t);
q.push(node(i,t));
}
if(i>k){
node tt=q.top();
q.pop();
sum+=(i-tt.id)*tt.cost;
a[tt.id]=i;
}
}
printf("%I64d\n",sum);
for(int i=;i<n;i++) printf("%d ",a[i]);
printf("%d\n",a[n]);
}
return ;
}

codeforces 854C.Planning 【贪心/优先队列】的更多相关文章

  1. Codeforces 854C Planning 【贪心】

    <题目链接> 题目大意: 表示有n架飞机本需要在[1,n]时间内起飞,一分钟只能飞一架.但是现在[1,k]时间内并不能起飞,只能在[k+1,k+n]内起飞.ci序号为i的飞机起飞延误一分钟 ...

  2. Codeforces 854C Planning(贪心+堆)

    贪心:让代价大的尽量移到靠前的位置. 做法:先让前k个数加进堆里,枚举k+1~n+k,每次把新元素加进堆后找到最大代价放在当前位置即可. #include<bits/stdc++.h> # ...

  3. #433 Div2 Problem C Planning (贪心 && 优先队列)

    链接 : http://codeforces.com/contest/854/problem/C 题意 : 有 n 架飞机需要分别在 1~n 秒后起飞,允许起飞的时间是从 k 秒后开始,给出每一架飞机 ...

  4. CodeForces 137C【贪心+优先队列】

    这种区间的贪心好像都出"烂"了? 不过还是想写一下... 先按照区间左端点排序一下,然后搞个优先队列维护当前最小的右端点. #include <bits/stdc++.h&g ...

  5. Planning CodeForces - 854C

    Planning CodeForces - 854C 题意:有n架航班,第i架原先的时候是在第i分钟起飞的.现在前k分钟无法有飞机起飞,因此需要调整安排表,延后飞机起飞.仍然要求每一分钟只有一架飞机起 ...

  6. C. Playlist Educational Codeforces Round 62 (Rated for Div. 2) 贪心+优先队列

    C. Playlist time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  7. HDU 6438 网络赛 Buy and Resell(贪心 + 优先队列)题解

    思路:维护一个递增队列,如果当天的w比队首大,那么我们给收益增加 w - q.top(),这里的意思可以理解为w对总收益的贡献而不是真正获利的具体数额,这样我们就能求出最大收益.注意一下,如果w对收益 ...

  8. hihoCoder 1309:任务分配 贪心 优先队列

    #1309 : 任务分配 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定 N 项任务的起至时间( S1, E1 ), ( S2, E2 ), ..., ( SN,  ...

  9. UVA 11134 - Fabled Rooks(贪心+优先队列)

    We would like to place  n  rooks, 1 ≤  n  ≤ 5000, on a  n×n  board subject to the following restrict ...

随机推荐

  1. 第17月第28天 python yield

    1. class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def _ ...

  2. python队列queue 之优先级队列

    import queue as Q def PriorityQueue_int(): que = Q.PriorityQueue() que.put(10) que.put(1) que.put(5) ...

  3. char *a与char a[n]的区别

    char *a='ab';//a[2]一定为'\0',但是,a[5]这样的指针越界不会报错 char a[3] = {'a','a','a'};//a[3]属于越界,会报错 char b[5]={'b ...

  4. mysql 原理 ~ 事务隔离机制

    简介: 事务隔离知多少内容  一 基础知识  1 事务特性 ACID   A 原子性 C 一致性 I 隔离性 D 持久性  2 并行事务出现的问题    1 脏读 读取了其他事务未提交的数据      ...

  5. Android 常用 adb 命令总结【转】

    原文链接 针对移动端 Android 的测试, adb 命令是很重要的一个点,必须将常用的 adb 命令熟记于心, 将会为 Android 测试带来很大的方便,其中很多命令将会用于自动化测试的脚本当中 ...

  6. 2018-2019-2 网络对抗技术 20165320 Exp1 PC平台逆向破解

    学到的新知识总结 管道:符号为| 前一个进程的输出直接作为后一个进程的输入 输出重定向:符号为> 将内容定向输入到文件中 perl:一门解释性语言,不需要预编译,直接在命令行中使用.常与输出重定 ...

  7. JS禁止右键查看源码,禁止复制,复制内容到剪切板

    有时候我们希望自己的网页源码不被查看,这时需要关掉鼠标的右击事件;有时候我们也希望禁止选择页面内容Ctrl+C复制. 1.禁止右键查看源码; <script> //设置右键事件 funct ...

  8. ActiveMQ学习笔记1

    1.接口 JMS 公共 点对点域 发布/订阅域 ConnectionFactory QueueConnectionFactory TopicConnectionFactory Connection Q ...

  9. SHA算法:签名串SHA算法Java语言参考(SHAHelper.java)

    SHAHelper.java package com.util; /** * @author wangxiangyu * @date:2017年10月16日 上午9:00:47 * 类说明:SHA签名 ...

  10. Qt Excel

    在pro文件添加 QT +=axcontainer 头文件 #include <QAxObject> void MainWindow::on_btnSelectFileDialog_cli ...