//看题解写的 https://blog.csdn.net/sdfzyhx/article/details/51804748
#include<bits/stdc++.h>
using namespace std;
#define ll long long struct node{
int id,g;
bool operator<(const node a)const{
return g>a.g;
}
}g[];
int n,m,b[][],pre[][];
ll sum[],dp[][]; int main(){
freopen("cookies.in","r",stdin);
freopen("cookies.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&g[i].g),g[i].id=i;
sort(g+,g++n);//降序排列
for(int i=;i<=n;i++)sum[i]=sum[i-]+g[i].g;
memset(dp,0x3f,sizeof dp);
dp[][]=;
for(int i=;i<=n;i++)
for(int j=i;j<=m;j++){
dp[i][j]=dp[i][j-i];
for(int k=;k<=i;k++){
if(dp[i][j]>dp[i-k][j-k]+(sum[i]-sum[i-k])*(i-k)){//是保留原状态更优还是k-i区间都发一块饼干的状态更优
dp[i][j]=dp[i-k][j-k]+(sum[i]-sum[i-k])*(i-k);
b[i][j]=;//这个状态是发了一块饼干的
pre[i][j]=i-k;//i-k+1 到 i都只发了一块饼干
}
}
}
printf("%lld\n",dp[n][m]);
int p=n,t=m,ans[]={};
while(p){
if(b[p][t]){//只发了一块饼干的状态
int x=pre[p][t];
for(int i=x+;i<=p;i++)
ans[g[i].id]++;
t-=p-x;p=x;
}
else {//第一种状态转移,1-p所有阶梯都下降1
for(int i=;i<=p;i++)ans[g[i].id]++;
t-=p;
}
}
for(int i=;i<=n;i++) printf("%d ",ans[i]);
}

Gym100340 线性dp的更多相关文章

  1. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  2. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  3. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  4. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  5. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  6. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  7. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  8. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  9. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

随机推荐

  1. HTML中的相对路径与绝对路径(转)

    原文地址:http://www.cnblogs.com/heyonggang/archive/2013/03/01/2938984.html 在HTML里只要涉及文件的地方(如超级链接.图片等)就会涉 ...

  2. python写GUI

    图形用户界面 本文利用wxpython wx包中的方法都是以大写的字幕开头 import wx def load(event): file = open(filename.GetValue()) co ...

  3. Study 4 —— 表单标签

    表单:用于采集浏览者的相关数据.表单标记<form></form>表单的基本语法格式如下: <form action="url" method=&qu ...

  4. Java编程思想 学习笔记8

    八.多态  在面向对象的程序设计语言中,多态是继数据抽象和继承之后的第三种基本特征. 多态通过分离做什么和怎么做,从另一角度将接口和实现分离开来. “封装”通过合并特征和行为来创建新的数据类型.“实现 ...

  5. Java Web之路(一)Servlet

    前言 执行过程 Servlet 生命周期.工作原理:http://www.cnblogs.com/xuekyo/archive/2013/02/24/2924072.html Servlet的生命周期 ...

  6. 安卓中location.href或者location.reload 不起作用

    链接:https://www.cnblogs.com/joshua317/p/6163471.html 在移动wap中,经常会使用window.location.href去跳转页面,这个方法在绝大多数 ...

  7. MySQL 之 数据库自动生成ID格式化编号(字符串格式化填充/拼接/时间)

    # 用户账号:1-4位:入职年份:5-6位:入职月份:7-11位:员工入职顺序号 select concat( date_format(now(),'%Y'), date_format(now(),' ...

  8. K - Find them, Catch them POJ - 1703 (带权并查集)

    题目链接: K - Find them, Catch them POJ - 1703 题目大意:警方决定捣毁两大犯罪团伙:龙帮和蛇帮,显然一个帮派至少有一人.该城有N个罪犯,编号从1至N(N<= ...

  9. es集群数据库~基本安装

    1 安装java环境   yum -y install java-1.8.0-openjdk*->需要最新的JDK环境1.82 安装 es   curl -L -O https://artifa ...

  10. transform 图标旋转,IE8、IE7不兼容

    要将图标旋转,只需使用transform的rotate以及transition即可完成旋转的动画效果.ease 规定慢速开始,然后变快,然后慢速结束的过渡效果;   ease-in 规定以慢速开始的过 ...