随着容器技术的迅速发展,Kubernetes已然成为大家追捧的容器集群管理系统。Prometheus作为生态圈Cloud Native Computing Foundation(简称:CNCF)中的重要一员。Prometheus是一套开源的系统监控报警框架。它启发于Google的borgmon监控系统,由工作在SoundCloud的google前员工在2012年创建,作为社区开源项目进行开发,并于2015年正式发布。2016年,Prometheus正式加入Cloud Native Computing Foundation,成为受欢迎度仅次于Kubernetes的项目。

vPrometheus特点

作为新一代的监控框架,Prometheus具有以下特点:

1. 强大的多维度数据模型:

(1) 时间序列数据通过metric名和键值对来区分。

(2) 所有的metrics都可以设置任意的多维标签。

(3) 数据模型更随意,不需要刻意设置为以点分隔的字符串。

(4) 可以对数据模型进行聚合,切割和切片操作。

(5) 支持双精度浮点类型,标签可以设为全unicode。

2. 灵活而强大的查询语句(PromQL):在同一个查询语句,可以对多个metrics进行乘法、加法、连接、取分数位等操作。

3. 易于管理: Prometheus server是一个单独的二进制文件,可直接在本地工作,不依赖于分布式存储。

4. 高效:平均每个采样点仅占 3.5 bytes,且一个Prometheus server可以处理数百万的metrics。

5. 使用 pull 模式采集时间序列数据,这样不仅有利于本机测试而且可以避免有问题的服务器推送坏的metrics。

6. 可以采用push gateway的方式把时间序列数据推送至Prometheus server 端。

7. 可以通过服务发现或者静态配置去获取监控的targets。

8. 有多种可视化图形界面。

9. 易于伸缩。

需要指出的是,由于数据采集可能会有丢失,所以Prometheus不适用对采集数据要100%准确的情形。但如果用于记录时间序列数据,Prometheus具有很大的查询优势,此外,Prometheus适用于微服务的体系架构。

vPrometheus组成及架构

Prometheus官方文档中的架构图:

从上图可以看出,Prometheus的主要模块包括:Prometheus server, exporters, Pushgateway, PromQL, Alertmanager 以及图形界面。

Prometheus生态圈中包含了多个组件,其中许多组件是可选的:

1. Prometheus Server: 用于收集和存储时间序列数据。

2. Client Library: 客户端库,为需要监控的服务生成相应的metrics并暴露给Prometheus server。当Prometheus server来 pull 时,直接返回实时状态的metrics。

3. Push Gateway: 主要用于短期的jobs。由于这类jobs存在时间较短,可能在Prometheus来pull之前就消失了。为此,这次jobs可以直接向Prometheus server端推送它们的metrics。这种方式主要用于服务层面的metrics,对于机器层面的metrices,需要使用node exporter。

4. Exporters: 用于暴露已有的第三方服务的metrics给Prometheus。

5. Alertmanager: 从Prometheus server端接收到alerts后,会进行去除重复数据,分组,并路由到对收的接受方式,发出报警。常见的接收方式有:电子邮件,pagerduty,OpsGenie, webhook等。

6. 一些其他的工具。

其大概的工作流程是:

1. Prometheus server定期从配置好的jobs或者exporters中拉metrics,或者接收来自Pushgateway发过来的metrics,或者从其他的Prometheus server中拉metrics。

2. Prometheus server在本地存储收集到的metrics,并运行已定义好的alert.rules,记录新的时间序列或者向Alertmanager推送警报。

3. Alertmanager根据配置文件,对接收到的警报进行处理,发出告警。

4. 在图形界面中,可视化采集数据。

vPrometheus相关概念

下面将对Prometheus中的数据模型,metric类型以及instance和job等概念进行介绍,以便读者在Prometheus的配置和使用中可以有一个更好的理解。

数据模型

Prometheus中存储的数据为时间序列,是由metric的名字和一系列的标签(键值对)唯一标识的,不同的标签则代表不同的时间序列。

  • metric 名字:该名字应该具有语义,一般用于表示metric的功能,例如:httprequests_total, 表示http请求的总数。其中,metric名字由ASCII字符,数字,下划线,以及冒号组成,且必须满足正则表达式 [a-zA-Z:][a-zA-Z0-9_:]*
  • 标签:使同一个时间序列有了不同维度的识别。例如 httprequests_total{method="Get"} 表示所有http请求中的Get请求。当 method="post" 时,则为新的一个metric。标签中的键由ASCII字符,数字,以及下划线组成,且必须满足正则表达式 [a-zA-Z:][a-zA-Z0-9_:]*
  • 样本:实际的时间序列,每个序列包括一个float64的值和一个毫秒级的时间戳。
  • 格式: {=,…} ,例如: http_requests_total{method="POST",endpoint="/api/tracks"}

四种Metric类型

Prometheus 客户端库主要提供四种主要的 metric 类型:

1. Counter一种累加的 metric,典型的应用如:请求的个数,结束的任务数, 出现的错误数等等。

例子:查询 http_requests_total{method="get", job="Prometheus", handler="query"} 返回8,10秒后,再次查询,则返回14。

2. Gauge一种常规的metric,典型的应用如:温度,运行的goroutines的个数;可以任意加减。

例子: go_goroutines{instance="172.17.0.2″, job="Prometheus"} 返回值147,10秒后返回124。

3. Histogram可以理解为柱状图,典型的应用如:请求持续时间,响应大小;可以对观察结果采样,分组及统计。

例子:查询 http_request_duration_microseconds_sum{job="Prometheus", handler="query"} 时,返回结果如下:

4. Summary类似于Histogram, 典型的应用如:请求持续时间,响应大小;提供观测值的count和sum功能;提供百分位的功能,即可以按百分比划分跟踪结果。

instance和jobs

instance: 一个单独scrape的目标, 一般对应于一个进程。

jobs: 一组同种类型的instances(主要用于保证可扩展性和可靠性),例如:

job和instance的关系:

job: api-server

    instance 1: 1.2.3.4:5670
instance 2: 1.2.3.4:5671
instance 3: 5.6.7.8:5670
instance 4: 5.6.7.8:5671

当scrape目标时,Prometheus会自动给这个scrape的时间序列附加一些标签以便更好的分别,例如: instance,job。

注意:以上段落均出自《Prometheus入门与实践》, 感兴趣的可以看看原文。

vPrometheus安装

1. 下载所需镜像

docker pull prom/node-exporter
docker pull prom/prometheus
docker pull grafana/grafana

2. 启动node-exporter

docker run -d -p 9100:9100 \
-v "/proc:/host/proc:ro" \
-v "/sys:/host/sys:ro" \
-v "/:/rootfs:ro" \
--net="host" \
prom/node-exporter

3. 验证node-exporter

url访问 http://toutou.com:9100/metrics ,效果如下:

Node exporter主要用于暴露metrics给Prometheus,其中metrics包括:cpu的负载,内存的使用情况,网络等。有了这些就可以做数据展示了

4. 启动prometheus

mkdir /data/prometheus
mkdir config
cd /data/prometheus/config
vim prometheus.yml
# 全局设置,可以被覆盖
global:
# 默认值为 15s,用于设置每次数据收集的间隔
scrape_interval: 15s
# 估算规则的默认周期 每15秒计算一次规则
evaluation_interval: 15s
# 设置报警规则
#rule_files:
#- "first_rules.yml"
#抓取配置列表
scrape_configs:
# 一定要全局唯一, 采集 Prometheus 自身的 metrics
- job_name: prometheus
# 静态目标的配置
static_configs:
#这个自带的默认监控prometheus所在机器的prometheus状态
- targets: ['localhost:9090']
labels:
instance: prometheus
# 一定要全局唯一, 采集 Prometheus 自身的 metrics
- job_name: linux
static_configs:
# 本机 node_exporter 的 endpoint
- targets: ['localhost:9100']
labels:
# 新添加的标签,可以自定义
instance: toutoudemo
docker run  -d \
-p 9090:9090 \
-v /data/prometheus/config/prometheus.yml:/etc/prometheus/prometheus.yml \
--name pr \
prom/prometheus

5. 验证prometheus

url访问 http://toutou.com:9090/graph ,效果如下:

vGrafana安装

1. 上文中已经拉取了grafana的镜像,这里直接启动即可

创建/data/app/grafana/data文件夹存储数据,创建好了以后启动grafana。

docker run -d \
-p 3000:3000 \
--name=grafana \
-v /data/app/grafana/data:/var/lib/grafana \
grafana/grafana

我们发现运行以后,docker实例并没有起来,于是我们用 docker logs grafana 查看了docker日志。

[root@localhost data]# docker logs grafana
GF_PATHS_DATA='/var/lib/grafana' is not writable.
You may have issues with file permissions, more information here: http://docs.grafana.org/installation/docker/#migration-from-a-previous-version-of-the-docker-container-to-5-1-or-later
mkdir: can't create directory '/var/lib/grafana/plugins': Permission denied

因为grafana用户会在这个目录写入文件,所以需要设置权限

2. /data/app/grafana/data设置权限

chmod 777 -R /data/app/grafana/data

3. 验证grafana

url访问 http://toutou.com:3000 ,效果如下:

打开之后的登录界面用默认账号/密码admin登录即可,会引导你修改密码,这里由于是本地测试的,就不设置了,直接skip跳过。

4. Add data source

点开Configuration(齿轮图标)->Data Source,然后点击Add data source按钮。然后选择Prometheus则进入到Prometheus数据源配置。

注意,access中选择Browser,配置好Prometheus点击save & test,弹出提示"Data source is working"即可。

4. Create Dashboard

回到首页,在创建(加号图标)中点击Dashboard,然后点击Add new panel按钮。然后点击Panel Title,点击标题下拉框中的Edit。

这里我们添加内存和cpu信息,点击保存,输入dashboard名称---cpu&memory(自定义)。回到首页即可看到我们保存的cpu&memory。

vSpringboot整合Prometheus+Grafana监控

1. 添加引用

        <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

2. 添加application.properties

management.endpoints.web.exposure.include=prometheus

3. 验证效果

注意:开启actuator后要注意要防护,开启actuator的服务千万不能直接对外。常见的方法可以新增一个过滤器对 /actuator 路径过滤,只允许内网IP地址访问。

如果不知道如何在springboot过滤拦截的话,可以看看这个。传送门:SpringBoot入门教程(十一)过滤器和拦截器

4. 部署springboot

部署好了以后,重启docker实例,并查看效果。

如果不知道如何部署springboot的话,可以看看这个。传送门:SpringBoot入门教程(二)CentOS部署SpringBoot项目从0到1

5. prometheus.yml中添加job

global:                  # 全局设置,可以被覆盖
scrape_interval: 15s # 默认值为 15s,用于设置每次数据收集的间隔 external_labels: # 所有时间序列和警告与外部通信时用的外部标签
monitor: 'codelab-monitor' rule_files: # 警告规则设置文件
- '/etc/prometheus/alert.rules' # 用于配置 scrape 的 endpoint 配置需要 scrape 的 targets 以及相应的参数
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus' # 一定要全局唯一, 采集 Prometheus 自身的 metrics # 覆盖全局的 scrape_interval
scrape_interval: 5s static_configs: # 静态目标的配置
- targets: ['localhost:9090'] - job_name: 'node' # 一定要全局唯一, 采集本机的 metrics,需要在本机安装 node_exporter scrape_interval: 10s static_configs:
- targets: ['127.0.0.1:9100'] - job_name: 'hellolearn' # 一定要全局唯一, 采集本机的 metrics,需要在本机安装 node_exporter scrape_interval: 10s
metrics_path: /actuator/prometheus
#params:
#format: ["prometheus"]
static_configs:
- targets: ['127.0.0.1:8301']

6. import模板

上文中我们已经演示了如何在dashboard中逐条添加指标,逐条添加就是熟悉一下指标格式。同样的,Grafana也提供了很多功能强大的模板(更多模板可以在这找),这里我们直接引入一个酷炫一点的模板。更多模板可以在这里找到。

点击+号 --> Import --> 输入模板链接或ID --> 点击Load。

Name和Unique identifier (uid)可以自定义,也可以用默认的。

点击import,效果如下:

7. 配置多个应用

若是想配置多个应用,在prometheus.yml中添加job_name,添加好了之后重启docker即可。

  - job_name: 'hellolearn'  # 一定要全局唯一, 采集本机的 metrics,需要在本机安装 node_exporter

    scrape_interval: 10s
metrics_path: /actuator/prometheus
#params:
#format: ["prometheus"]
static_configs:
- targets: ['127.0.0.1:8301'] - job_name: 'hellolearn-6' # 一定要全局唯一, 采集本机的 metrics,需要在本机安装 node_exporter scrape_interval: 10s
metrics_path: /actuator/prometheus
#params:
#format: ["prometheus"]
static_configs:
- targets: ['127.0.0.1:8306']

在Grafana的dashboard直接切换即可。

其他参考/学习资料:

v源码地址

https://github.com/toutouge/javademosecond/tree/master/hellolearn

作  者:请叫我头头哥


出  处:http://www.cnblogs.com/toutou/


关于作者:专注于基础平台的项目开发。如有问题或建议,请多多赐教!


版权声明:本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接。


特此声明:所有评论和私信都会在第一时间回复。也欢迎园子的大大们指正错误,共同进步。或者直接私信


声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是作者坚持原创和持续写作的最大动力!

#comment_body_3242240 { display: none }

SpringBoot进阶教程(七十一)详解Prometheus+Grafana的更多相关文章

  1. SpringBoot进阶教程(七十四)整合ELK

    在上一篇文章<SpringBoot进阶教程(七十三)整合elasticsearch >,已经详细介绍了关于elasticsearch的安装与使用,现在主要来看看关于ELK的定义.安装及使用 ...

  2. SpringBoot进阶教程(六十一)intellij idea project下建多个module搭建架构(下)

    在上一篇文章<SpringBoot进阶教程(六十)intellij idea project下建多个module(上)>中,我们已经介绍了在intellij idea中创建project之 ...

  3. SpringBoot进阶教程(七十)SkyWalking

    流行的APM(Application Performance Management工具有很多,比如Cat.Zipkin.Pinpoint.SkyWalking.优秀的监控工具还有很多,其它比如还有za ...

  4. SpringBoot进阶教程(七十三)整合elasticsearch

    Elasticsearch 是一个分布式.高扩展.高实时的搜索与数据分析引擎.它能很方便的使大量数据具有搜索.分析和探索的能力.充分利用Elasticsearch的水平伸缩性,能使数据在生产环境变得更 ...

  5. SpringBoot进阶教程(五十九)整合Codis

    上一篇博文<详解Codis安装与部署>中,详细介绍了codis的安装与部署,这篇文章主要介绍介绍springboot整合codis.如果之前看过<SpringBoot进阶教程(五十二 ...

  6. Httpd服务进阶知识-HTTP协议详解

    Httpd服务进阶知识-HTTP协议详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.WEB开发概述 1>.C/S编程 CS即客户端.服务器编程. 客户端.服务端之间需 ...

  7. Qt零基础教程(四) QWidget详解篇

    在博客园里面转载我自己写的关于Qt的基础教程,没次写一篇我会在这里更新一下目录: Qt零基础教程(四) QWidget详解(1):创建一个窗口 Qt零基础教程(四) QWidget详解(2):QWid ...

  8. Qt零基础教程(四)QWidget详解(3):QWidget的几何结构

    Qt零基础教程(四)  QWidget详解(3):QWidget的几何结构 这篇文章里面分析了QWidget中常用的几种几何结构 下图是Qt提供的分析QWidget几何结构的一幅图,在帮助的 Wind ...

  9. J2EE进阶(四)Spring配置文件详解

    J2EE进阶(四)Spring配置文件详解 前言 Spring配置文件是用于指导Spring工厂进行Bean生产.依赖关系注入(装配)及Bean实例分发的"图纸".Java EE程 ...

随机推荐

  1. Language Guide (proto3) | proto3 语言指南(十)映射

    Maps - 映射 如果要创建关联映射作为数据定义的一部分,协议缓冲区提供了一种方便的快捷语法: map<key_type, value_type> map_field = N; -其中k ...

  2. Java——Character类

    Java Character类 使用字符时,通常使用的是内置数据类型char. 实例: char ch = 'A'; //字符数组 char [] charArray = {'a','b','c',' ...

  3. Phoenix踩坑填坑记录

    Phoenix踩坑填坑记录 Phoenix建表语句 如何添加二级索引 判断某表是否存在 判断索引是否存在 Date类型日期,条件判断 杂项 记录Phoenix开发过程中的填坑记录. 部分原文地址:ph ...

  4. 6. Linux输入输出重定向

    1.输入重定向是指把文件导入到命令中,而输出重定向则是指把原本要输出到屏幕的数据信息写入到指定文件中. 输入重定向中用到的符号及其作用 输出重定向中用到的符号及其作用 1)通过输出重定向将原本要输出到 ...

  5. mysql-mysqli_fetch_all(错误)

    mysql-mysqli_fetch_all(错误) 问题:使用mysql-mysqli_fetch_all获取返回的数组时失败/报错 原因及解决方法: mysqli_fetch_all函数只存在于m ...

  6. CCF-I'm stuck!(BFS)

    I'm stuck!   问题描述 给定一个R行C列的地图,地图的每一个方格可能是'#', '+', '-', '|', '.', 'S', 'T'七个字符中的一个,分别表示如下意思: '#': 任何 ...

  7. Flink 在又拍云日志批处理中的实践

    日前,由又拍云举办的大数据与 AI 技术实践|Open Talk 杭州站沙龙在杭州西溪科创园顺利举办.本次活动邀请了有赞.个推.方得智能.又拍云等公司核心技术开发者,现场分享各自领域的大数据技术经验和 ...

  8. 用鸿蒙开发AI应用(八)JS框架访问内核层

    目录:前言JS应用开发框架原理内置模块实现ace模块开发界面程序 前言上回说到,用C++来写UI界面的开发效率不如JS+HTML来的高,但设备开发又免不了要通过内核态来操作硬件,这里我们就要先打通从J ...

  9. GPLT L2-006 树的遍历(二叉树)

    题意: 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 思路: 后序遍历序列 = 左子树遍历序列 + 右子树遍历序列 + 根节点. 中序遍历序列 = ...

  10. pta—紧急救援 (dijkstra)

    题目连接:https://pintia.cn/problem-sets/994805046380707840/problems/994805073643683840 题面: 作为一个城市的应急救援队伍 ...