[转]SIFT,SURF,ORB,FAST 特征提取算法比较
转载地址:https://blog.csdn.net/vonzhoufz/article/details/46461849
主要的特征检测方法有以下几种,在一般的图像处理库中(如opencv, VLFeat, Boofcv等)都会实现。
- FAST ,Machine Learning for High-speed Corner Detection, 2006
- SIFT,Distinctive Image Features from Scale-Invariant Keypoints,2004, invariant to image translation, scaling, and rotation, partially invariant to illumination changes and robust to local geometric distortion
- SURF,Speeded Up Robust Features,2006,受SIFT启发,比SIFT快,健壮
- ORB,ORB: an efficient alternative to SIFT or SURF,2011,基于FAST,比SIFT快两个数量级,可作为SIFT的替代
- BRISK,BRISK: Binary Robust Invariant Scalable Keypoints
- STAR,Censure: Center surround extremas for realtime feature detection and matching,引用次数不高
- MSER,Robust Wide Baseline Stereo from Maximally Stable Extremal Regions,2002,斑点检测
- GFTT,Good Features to Track,1994,Determines strong corners on an image
- HARRIS,Harris and M. Stephens (1988). “A combined corner and edge detector”,也是一种角点检测方法
这里主要关注SIFT,SURF,FAST,ORB的对比。
| Image NO | SIFT | SURF | ORB | FAST |
|---|---|---|---|---|
| 0 | 2414 | 4126 | 500 | 11978 |
| 1 | 4295 | 8129 | 500 | 16763 |
| 2 | 3404 | 4784 | 500 | 16191 |
| 3 | 1639 | 2802 | 500 | 7166 |
| 4 | 1510 | 1484 | 497 | 29562 |
| 5 | 10572 | 8309 | 500 | 720 |
| 6 | 191 | 187 | 295 | 16125 |
| 7 | 3352 | 4706 | 500 | 567 |
| 8 | 165 | 403 | 374 | 26701 |
| 9 | 4899 | 7523 | 500 | 12780 |
| 10 | 1979 | 4212 | 500 | 10676 |
| 11 | 3599 | 3294 | 500 | 663 |
| 12 | 163 | 168 | 287 | 7923 |
| 13 | 1884 | 2413 | 500 | 11681 |
| 14 | 2509 | 5055 | 500 | 18097 |
| 15 | 9177 | 4773 | 500 | 7224 |
| 16 | 3332 | 3217 | 500 | 20502 |
| 17 | 5446 | 6611 | 500 | 16553 |
| 18 | 4592 | 6033 | 500 | 706 |
| 19 | 266 | 509 | 459 | 9613 |
| 20 | 2087 | 2786 | 500 | 7459 |
| 21 | 2582 | 3651 | 500 | 12147 |
| 22 | 2509 | 4237 | 500 | 14890 |
| 23 | 1236 | 4545 | 500 | 6473 |
| 24 | 1311 | 2606 | 500 | 4293 |
| 25 | 237 | 387 | 500 | 657 |
| 26 | 968 | 1418 | 488 | 6609 |
| Time Cost | 21.52 | 17.4 | 0.97 | 0.25 |
可以看到FAST提取了大量的特征点,在计算时间上,比SIFT SURF快两个数量级,ORB在FAST基础上得来的,特征点的质量比较高!
下面通过通过两张图片来看这几个算法匹配的效果,1639-1311-697表示图片1,2分别提取了1639,1311个keypoints,其中匹配的有697个。
| Image pair | SIFT | SURF | ORB | FAST(SURF) |
|---|---|---|---|---|
| eiffel-1.jpg,eiffel-13.jpg | 1639-1311-697 | 2802-2606-1243 | 500-500-251 | 1196-1105-586 |
接下来是eiffel-1.jpg,eiffel-13.jpg 俩图片通过不同算法进行匹配的结果示意图。
SIFT
SURF
ORB
FAST
需要注意的地方:
* 链接的时候加上pkg-config opencv --cflags --libs可以加入所有opencv的库
* SIFT,SURF是nonfree的,使用的时候需要方法initModule_nonfree(),需要头文件opencv2/nonfree/nonfree.hpp
* FAST只是检测角点,要结合其他extractor如ORB,SIFT.
参考:
1.opencv feature2d
2.Feature Detection and Description
[转]SIFT,SURF,ORB,FAST 特征提取算法比较的更多相关文章
- opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...
- 第十三节、SURF特征提取算法
上一节我们已经介绍了SIFT算法,SIFT算法对旋转.尺度缩放.亮度变化等保持不变性,对视角变换.仿射变化.噪声也保持一定程度的稳定性,是一种非常优秀的局部特征描述算法.但是其实时性相对不高. SUR ...
- SIFT 特征提取算法总结
原文链接:http://www.cnblogs.com/cfantaisie/archive/2011/06/14/2080917.html 主要步骤 1).尺度空间的生成: 2).检测尺度空间极 ...
- opencv3.0中contrib模块的添加+实现SIFT/SURF算法
平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake+Anaconda3(python3.7.0) Issue说明:Opencv3.0版本已经发布了有一段时间,在这段 ...
- 特征提取算法(3)——SIFT特征提取算子
目录: 前言 1.高斯尺度空间GSS 2.高斯差分DOG 用DoG检测特征点 GSS尺度选择 3.图像金字塔建立 用前一个octave中的倒数第三幅图像生成下一octave中的第一幅图像 每层octa ...
- 【特征检测】BRISK特征提取算法
[特征检测]BRISK特征提取算法原创hujingshuang 发布于2015-07-24 22:59:21 阅读数 17840 收藏展开简介 BRISK算法是2011年ICCV上< ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- 模式匹配之常见匹配算法---SIFT/SURF、haar特征、广义hough变换的特性对比分析
识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...
- linux/ubuntu下最简单好用的python opencv安装教程 ( 解决 imshow, SIFT, SURF, CSRT使用问题)
希望这篇文章能彻底帮你解决python opencv安装和使用中的常见问题. 懒人请直奔这一节, 一条命令安装 opencv 使用python-opencv常用的问题 在linux中使用python版 ...
随机推荐
- spark SQL (四)数据源 Data Source----Parquet 文件的读取与加载
spark SQL Parquet 文件的读取与加载 是由许多其他数据处理系统支持的柱状格式.Spark SQL支持阅读和编写自动保留原始数据模式的Parquet文件.在编写Parquet文件时,出于 ...
- /etc/fstab和/etc/mtab的区别
etc/fstab文件的作用 记录了计算机上硬盘分区的相关信息,启动 Linux 的时候,检查分区的 fsck 命令,和挂载分区的 mount 命令,都需要 fstab 中的信息,来正 ...
- (12)Linux文件系统层次结构
在 Linux 操作系统中,所有的文件和目录都被组织成以一个根节点"/"开始的倒置的树状结构 文件系统的最顶层是由根目录开始的,系统使用"/"来表示根目录,在根 ...
- Latex安装教程(附美赛论文latex模板)
@ 目录 Latex简介 安装步骤 texlive下载 配置环境变量 配置Texsudio latex版本helloworld 美赛 latex模板 Latex简介 LaTeX(LATEX,音译&qu ...
- cassandra权威指南读书笔记--客户端
DataStax驱动最成熟.默认,驱动程序会使用第一个连接的节点作为支持的版本协议.如果集群存在高低版本的节点(比如升级场景),如果驱动先连接不同不同版本的节点,可能会出现不兼容.驱动支持压缩客户端和 ...
- hdu 6867 Tree 2020 Multi-University Training Contest 9 dfs+思维
题意: 给你一个由n个点,n-1条有向边构成的一颗树,1为根节点 下面会输入n-1个数,第i个数表示第i+1点的父节点.你可以去添加一条边(你添加的边也是有向边),然后找出来(x,y)这样的成对节点. ...
- AC自动机算法 && 例题
参考链接: https://blog.csdn.net/bestsort/article/details/82947639#commentBox https://blog.csdn.net/niush ...
- Codeforces Round #654 (Div. 2) D. Grid-00100 (构造)
题意:构造一个\(n\)x\(n\)只含\(0\)和\(k\)个\(1\)的矩阵,统计每一行每一列\(1\)的sum,然后构造一个权值最大行和最小行的差的平方加权值最大列和最小列的差的平方的最小和(\ ...
- 操作系统 part5
1.线程安全 线程安全就是多线程访问时,采用了加锁机制,当一个线程访问该类的某个数据时,进行保护,其他线程不能进行访问直到该线程读取完,其他线程才可使用.不会出现数据不一致或者数据污染. 线程不安全就 ...
- sql 手注 语法
mysql中的information_schema 结构用来存储数据库系统信息 information_schema 结构中这几个表存储的信息,在注射中可以用到的几个表. | SCHEMATA ―― ...