题目描述

给定一个有\(n\)个元素的序列,元素编号为\([1,n]\),每个元素有\(k\)个属性\(p_1,p_2,p_3,...,p_k\) ,求序列中满足 \(i<j\)且 \(1 \leq t \leq k\),\(p_{t,i}<p_{t,j}\) 的数对\((i,j)\)的个数。

输入格式

第一行两个整数 \(n\),\(k\),表示序列长度和属性个数。

接下来\(k\) 行,每行 \(n\)个整数,第\(t\) 行第 \(i\)个数表示\(p_{t,i}\) 。

输出格式

共1行,表示满足要求的数对个数。

样例

样例输入

5 4
1 4 5 2 3
3 5 2 1 4
2 3 4 1 5
2 3 1 5 4

样例输出

2

数据范围与提示

对于\(30\%\)的数据\(n \leq 5000\),\(k \leq 6\)

对于\(100\%\)的数据\(1 \leq n \leq 40000\),\(k \leq 6\)。保证对于所有元素的\(p_t\)属性组成一个\(1 - n\)的排列。

分析

这道题算上坐标的话,维数达到了\(7\)维

如果用一些数据结构去维护的话,很可能会超时

其实我们用 \(bitset\) 就可以搞定这道题

对于每一维,我们用 \(bitset\) 去存储小于\(i\)的数所在的位置

最后对于每一个位置\(i\),我们将这几个维度作位与运算

最后统计下标小于\(i\)的位置中\(1\)的个数

这样去处理时间复杂度为\(O(n \times k)\),空间复杂度为\(O(n^2 \times k)\)

而\(40000 \times 40000 \times 6\) 的\(bitset\)我们显然是开不下的

因此我们考虑用时间换空间

我们可以用分块的思想将时间复杂度和空间复杂度都均衡至\(O(nlogn\times k)\)

代码

#include <cstdio>
#include <bitset>
#include <cmath>
#include <iostream>
const int maxn = 4e4 + 5;
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
return x * f;
}
int n, m, a[8][maxn], rk[8][maxn], blo;
std::bitset<maxn> b[8][305], now, js, ws;
int main() {
n = read(), m = read();
blo = sqrt(n);
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] = read();
rk[i][a[i][j]] = j;
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j * blo <= n; j++) {
b[i][j] = b[i][j - 1];
for (int k = (j - 1) * blo + 1; k <= j * blo; k++) {
b[i][j].set(rk[i][k]);
}
}
}
int ans = 0;
ws.reset();
for (int i = 1; i <= n; i++) {
now.set();
ws.set(i);
now &= ws;
for (int j = 1; j <= m; j++) {
int shuyu = a[j][i] / blo;
js.reset();
js |= b[j][shuyu];
for (int k = shuyu * blo + 1; k <= a[j][i]; k++) {
js.set(rk[j][k]);
}
now &= js;
}
ans += now.count() - 1;
}
printf("%d\n", ans);
return 0;
}

偏序 分块+bitset的更多相关文章

  1. 2015北京网络赛 J Clarke and puzzle 求五维偏序 分块+bitset

    Clarke and puzzle Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/contest/acmicpc20 ...

  2. hihocoder1236(北京网络赛J):scores 分块+bitset

    北京网络赛的题- -.当时没思路,听大神们说是分块+bitset,想了一下发现确实可做,就试了一下,T了好多次终于过了 题意: 初始有n个人,每个人有五种能力值,现在有q个查询,每次查询给五个数代表查 ...

  3. 种树 by yoyoball [树分块+bitset]

    题面 给定一棵树,有点权 每次询问给出一些点对,求这些点对之间的路径的并集上不同权值的个数,以及这些权值的$mex$ 思路 先考虑只有一对点对,只询问不同权值个数的问题:树上莫队模板题 然后加个$me ...

  4. HihoCoder - 1236 Scores (五维偏序,分块+bitset)

    题目链接 题意:给定n个五维空间上的点,以及m组询问,每组询问给出一个点,求五个维度都不大于它的点有多少个,强制在线. 神仙题 单独考虑每个维度,把所有点按这个维度上的大小排序,然后分成T块,每块用一 ...

  5. hihocoder 1236(2015北京网络赛 J题) 分块bitset乱搞题

    题目大意: 每个人有五门课成绩,初始给定一部分学生的成绩,然后每次询问给出一个学生的成绩,希望知道在给定的一堆学生的成绩比这个学生每门都低或者相等的人数 因为强行要求在线查询,所以题目要求,每次当前给 ...

  6. Codeforces 917F Substrings in a String - 后缀自动机 - 分块 - bitset - KMP

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个字母串,要求支持以下操作: 修改一个位置的字母 查询一段区间中,字符串$s$作为子串出现的次数 Solution 1 Bitset 每 ...

  7. CF1093E Intersection of Permutations [分块 +bitset]

    大家好, 我非常喜欢暴力数据结构, 于是就用分块A了此题 分块题,考虑前缀和 \(b_i\) 表示 bitset 即 \(0\) ~ $i $ 出现过的数字,然后考虑直接暴力复制块然后前缀和,修改也很 ...

  8. Bzoj 2120: 数颜色 && 2453: 维护队列 莫队,分块,bitset

    2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit: 2645  Solved: 1039[Submit][Status][Discuss] ...

  9. Bzoj 2453: 维护队列 && Bzoj 2120: 数颜色 分块,bitset

    2453: 维护队列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 578  Solved: 247[Submit][Status][Discuss] ...

随机推荐

  1. DOM练习 选择框、表格添加、变色

    多个选择框,三个按钮,显示:全选.反选.不选 html部分,建立五个多选框,三个按钮 <input type="checkbox"> <input type=&q ...

  2. 那些年拿过的shell之springboot jolokia rce

    日穿扫描扫到一个spring boot actuator 可以看到有jolokia这个端点,再看下jolokia/list,存在type=MBeanFactory 关键字 可以使用jolokia-re ...

  3. Python globals和locals函数_reload函数

    Python globals和locals函数_reload函数: globals( ): 返回所有能够访问到的全局名字 num = 5 sum = 0 def add(num): func_sum ...

  4. Python os.lchmod() 方法

    概述 os.lchmod() 方法用于修改连接文件权限.高佣联盟 www.cgewang.com 只支持在 Unix 下使用. 语法 lchmod()方法语法格式如下: os.lchmod(path, ...

  5. PHP fileowner() 函数

    定义和用法 fileowner() 函数返回指定文件的用户 ID(所有者). 如果成功,该函数返回用户 ID.如果失败,则返回 FALSE. 语法 fileowner(filename) 参数 描述 ...

  6. luogu P4632 [APIO2018] New Home 新家 线段树 set 二分

    写了一种比较容易理解 但是常数很大的sol. 容易发现可以扫描线. 维护好序列之后发现很难查距离 考虑二分. 这里二分可以在线段树上进行 当然可能存在一些问题 如果离散化的话需要处理一些比较麻烦的细节 ...

  7. Spark初探

    Apache Spark是一个针对大规模数据的快速.统一处理引擎. One stack rule them all 1-Stream Processing :spark Streaming 2-Ad- ...

  8. JConsole、VisualVM 依赖的 JMX 技术到底是什么

    我是风筝,公众号「古时的风筝」,一个兼具深度与广度的程序员鼓励师,一个本打算写诗却写起了代码的田园码农! 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在 ...

  9. excel-删除

    问题[1]:删除不整齐数据. 1 编号 单词本身 词性 命名实体 依存句法父节点 依存句法 谓词 语义角色 2 0 < wp O 1 WP _ - 3 1 弄臣 n O -1 HED _ - 4 ...

  10. 解放双手!用 Python 控制你的鼠标和键盘

    在工作中难免遇到需要在电脑上做一些重复的点击或者提交表单等操作,如果能通过 Python 预先写好相关的操作指令,让它帮你操作,然后你自己去刷网页打游戏,岂不是很爽?] 很多人学习python,不知道 ...