Speaker:Andrew Ng

这一次主要讲解的是单变量的线性回归问题。


1.Model Representation

先来一个现实生活中的例子,这里的例子是房子尺寸和房价的模型关系表达。

通过学习Linear Regression可以进行预测某一size的房子prices是多少。

Regression问题属于Supervised Learning监督学习问题,预测连续值,Classification分类是预测离散值,上一个Introduction已经介绍过。

在上一张图的坐标点就是这里的训练集合。这里我们定义m是训练数据的数量或组数,x是输入变量或特征feature,y是输出变量target。代表一组训练数据,例如 = 2104, = 1416, = 460.

图的左半边表达的就是进行Price预测的流程,关键就在与如何得到h(Hypothesis),它表示了x(Size of house)和y(Price)之间的一种关系。得到这个关系h我们就可以来根据给定的x来预测y的值。 那么h如何来表达呢?因为是单变量的线性回归,那么可以设
也可以简写成.那么我们如何来计算他的参数?下面继续。



2.Cost Function
这里讲述如何定义损失函数Cost Function来得到的值。
思路 Idea  :  Choose , so that is close to for out training examples.
这里我们定义最小平方误差公式:
这张图是关键,一定要明确我们的问题是什么。目标就是能使Goal最小化的的参数值就是我们要求的。
这里Andrew Ng举例了一个在最小平方误差公式下,的情况,那么就是一个二次函数,取到极值点就就是最小对应的参数值就是我们需要的答案。这个比较简单,这里不再赘述了。
回归到原来的问题,我们应该如何去找这样的参数值使得J最小呢。
思路就是,初始化,不断的改变他们的值,使得Cost Function不断减小,知道在一个最小值的位置为止。
这里我们使用梯度下降的方法来寻找这个值,向下面的图一样,初始时候站在山顶,然后从山顶一路快速冲下山。
不同的初始化参数的位置可能导致取到不同的最小值,所以梯度下降算法得到是局部最优值。
 
梯度下降算法,Gradient Descent Algorithm如下:
repeat until convergence {
            for   and 
}
就代表着梯度下降的方向,代表学习的速度(Learning Rate),这里需要注意的是需要同时修改(Simultaneous Update).
 
 这个图反应的是Learning Rate对于梯度下降算法的影响。
 
梯度下降方法收敛到一个局部最小值,即使用一个固定的Learning Rate。当我们将要得到局部最小值时候,梯度也在不断变缓,放慢变化速率,自动的小幅度像局部最优点靠近。
 
最后计算偏导数我们得到的公式如下:
这种叫做Batch Gradient Descent 批量梯度下降法,使用所有的训练样本来计算.
 

3.Question
Let ne some function so that outputs a number. For this problem, is some arbitrary/unknown smooth function(not necessarily the cost function of linear regression, so is may have local optima).Suppose we use gradient descent to try to minimize as ia function of and . Which of the following statements are true.
1. 如果Learning Rate过大,可能会出现overshoot the minimum现象,超过了最小点并且有可能收敛失败,产生diverge。
2.初始化对于最后找到的结果是有影响的,梯度下降的最后结果有可能找到不同的局部最优。
3.如果初始化刚好在了全局最优的位置,那么梯度为0,不会在改变了。
4.如果Learning Rate过小,那么梯度下降每次只能走一小步,需要很长时间去收敛Converge。
 
 
Suppose that for some linear regression problem (say, predicting housing prices as in the lecture), we have some training set, and for our training set we managed to find some  
such that ,Which of the statements below must then be true?
1. 如果所有的Training Examples 能够在一条直线上是可能的。
2.的情况下对于所有的Examples中,
3.对于这题的线性回归问题, 除去全局最优它不存在局部最优,所以不可能卡在某一个局部最优位置。

2. Linear Regression with One Variable的更多相关文章

  1. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. 机器学习笔记1——Linear Regression with One Variable

    Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...

  4. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  5. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  6. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  7. MachineLearning ---- lesson 2 Linear Regression with One Variable

    Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...

  8. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  9. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  10. Lecture0 -- Introduction&&Linear Regression with One Variable

    Introduction What is machine learning? Tom Mitchell provides a more modern definition: "A compu ...

随机推荐

  1. Unity优化图解

    花了2天把之前学到的一些关于优化的知识全都写了下来,放到一张表里面 https://www.processon.com/mindmap/5cf64f53e4b0bc8329e8112e

  2. rename 表名

    rename table 旧表名1 to 新表名1,旧表名2 to 新表名2;

  3. Java调用Linux命令执行

    调用方式 Java调用linux命令执行的方式有两种,一种是直接调用linux命令,一种是将linux命令写到.sh脚本中,然后调用脚本执行. 详细说明 直接调用:使用java中lang包下面的Run ...

  4. Electron入门Demo之桌面应用计算器笔记(二)

    码文不易啊,转载请带上本文链接呀,感谢感谢 https://www.cnblogs.com/echoyya/p/14307996.html 在之前总结了一篇自学笔记,通过之前学习到的方法和知识,完成了 ...

  5. Linux TCP漏洞 CVE-2019-11477 CentOS7 修复方法

    CVE-2019-11477漏洞简单介绍 https://cert.360.cn/warning/detail?id=27d0c6b825c75d8486c446556b9c9b68 RedHat用户 ...

  6. 求得二叉搜索树的第k小的元素

    求得二叉搜索树的第k小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 须知:二叉搜索树,又叫二叉排序树,二叉查找树.特点是:左子树的所有元素都小于等 ...

  7. 指针锁定 Pointer Lock API 用法

    指针锁定 Pointer Lock API 通过它可以访问原始的鼠标运动(基于指针的相对位移 movementX / movementY),把鼠标事件的目标锁定到一个特定的元素,同时隐藏视图中的指针光 ...

  8. Ubuntu安装记录

    好吧,这成功地让我想起了那些边肯红薯边黑苹果的早晨······ 本人纯属Windows用腻,后期请大佬多多指教 前面因为没U盘而碰壁的内容在此不说,接下来因为太兴奋,关于安装U盘制作没记录什么.最终, ...

  9. C#高级编程第11版 - 第六章 索引

    [1]6.2 运算符 1.&符在C#里是逻辑与运算.管道符号|在C#里则是逻辑或运算.%运算符用来返回除法运算的余数,因此当x=7时,x%5的值将是2. [2]6.2.1 运算符的简写 1.下 ...

  10. P5858 Golden Swold

    写在前面 简单的单调队列优化 DP 处理略微有点恶心,于是乎,用来取 \(\max\) 的极小值直接开到了 long long 的最小极限,了 define int long long /cy 算法思 ...