bzoj3673可持久化并查集 by zky

题意:

维护可以恢复到第k次操作后的并查集。

题解:

用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以使合并均摊复杂度为O(nlog2n)。可持久化线段树实际上就是在更新节点时按主席树的插入方式新建一条路径(其实主席树就是可持久化权值线段树)。

代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 30000
#define inc(i,j,k) for(int i=j;i<=k;i++)
using namespace std; int fa[maxn*],ch[maxn*][],dep[maxn*],pos[maxn*],sz,n,m,rt[maxn];
inline int read(){
char ch=getchar(); int f=,x=;
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();} while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return f*x;
}
void build(int &x,int l,int r){
x=++sz; if(l==r){fa[x]=l; dep[x]=; pos[x]=l; return;}
int mid=(l+r)>>; build(ch[x][],l,mid); build(ch[x][],mid+,r);
}
void updatefa(int &x,int l,int r,int a,int b){
sz++; fa[sz]=fa[x]; dep[sz]=dep[x]; pos[sz]=pos[x]; ch[sz][]=ch[x][]; ch[sz][]=ch[x][];
x=sz; if(l==r){fa[x]=b; return;}
int mid=(l+r)>>; if(a<=mid)updatefa(ch[x][],l,mid,a,b);else updatefa(ch[x][],mid+,r,a,b);
}
void updatedep(int &x,int l,int r,int a,int b){
sz++; fa[sz]=fa[x]; dep[sz]=dep[x]; pos[sz]=pos[x]; ch[sz][]=ch[x][]; ch[sz][]=ch[x][];
x=sz; if(l==r){dep[x]=b; return;}
int mid=(l+r)>>; if(a<=mid)updatedep(ch[x][],l,mid,a,b);else updatedep(ch[x][],mid+,r,a,b);
}
int query(int x,int l,int r,int a){
if(l==r)return x; int mid=(l+r)>>;
if(a<=mid)return query(ch[x][],l,mid,a);else return query(ch[x][],mid+,r,a);
}
int find(int x,int y){
int z=query(x,,n,y); if(fa[z]==pos[z])return z;else return find(x,fa[z]);
}
void merge(int &s,int x,int y){
int z1=find(s,x),z2=find(s,y); if(pos[z1]==pos[z2])return; if(dep[z1]>dep[z2])swap(z1,z2);
int abc=max(dep[z2],dep[z1]+); updatefa(s,,n,pos[z1],pos[z2]); updatedep(s,,n,pos[z2],abc);
}
int main(){
n=read(); m=read(); build(rt[],,n);
inc(i,,m){
int opt=read();
if(opt==){int a=read(),b=read(); rt[i]=rt[i-]; merge(rt[i],a,b);}
if(opt==){int k=read(); rt[i]=rt[k];}
if(opt==){
int a=read(),b=read(); rt[i]=rt[i-];
if(pos[find(rt[i],a)]==pos[find(rt[i],b)])puts("");else puts("");
}
}
return ;
}

------------------------------------------------------------------------------------------------------------------------------------------

bzoj3674可持久化并查集加强版

题意:

同3673,但强制在线且点数操作数≤200000

题解:

T个不停,后来看黄学长博客把数组n*2(log2n)开成结果A了,后来突然明白我fa数组和dep数组是分开维护的,也就是说每次操作新建了两条路径,当然要*2,QAQ~

代码:

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 200010
#define inc(i,j,k) for(int i=j;i<=k;i++)
using namespace std; int fa[maxn*],ch[maxn*][],dep[maxn*],pos[maxn*],sz,n,m,rt[maxn];
inline int read(){
char ch=getchar(); int f=,x=;
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();} while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return f*x;
}
void build(int &x,int l,int r){
x=++sz; if(l==r){fa[x]=l; dep[x]=; pos[x]=l; return;}
int mid=(l+r)>>; build(ch[x][],l,mid); build(ch[x][],mid+,r);
}
void updatefa(int &x,int l,int r,int a,int b){
sz++; fa[sz]=fa[x]; dep[sz]=dep[x]; pos[sz]=pos[x]; ch[sz][]=ch[x][]; ch[sz][]=ch[x][];
x=sz; if(l==r){fa[x]=b; return;}
int mid=(l+r)>>; if(a<=mid)updatefa(ch[x][],l,mid,a,b);else updatefa(ch[x][],mid+,r,a,b);
}
void updatedep(int &x,int l,int r,int a,int b){
sz++; fa[sz]=fa[x]; dep[sz]=dep[x]; pos[sz]=pos[x]; ch[sz][]=ch[x][]; ch[sz][]=ch[x][];
x=sz; if(l==r){dep[x]=b; return;}
int mid=(l+r)>>; if(a<=mid)updatedep(ch[x][],l,mid,a,b);else updatedep(ch[x][],mid+,r,a,b);
}
int query(int x,int l,int r,int a){
if(l==r)return x; int mid=(l+r)>>;
if(a<=mid)return query(ch[x][],l,mid,a);else return query(ch[x][],mid+,r,a);
}
int find(int x,int y){
int z=query(x,,n,y); if(fa[z]==pos[z])return z;else return find(x,fa[z]);
}
void merge(int &s,int x,int y){
int z1=find(s,x),z2=find(s,y); if(pos[z1]==pos[z2])return; if(dep[z1]>dep[z2])swap(z1,z2);
int abc=max(dep[z2],dep[z1]+); updatefa(s,,n,pos[z1],pos[z2]); updatedep(s,,n,pos[z2],abc);
}
int main(){
n=read(); m=read(); build(rt[],,n); int last=;
inc(i,,m){
int opt=read();
if(opt==){int a=read()^last,b=read()^last; rt[i]=rt[i-]; merge(rt[i],a,b);}
if(opt==){int k=read()^last; rt[i]=rt[k];}
if(opt==){
int a=read()^last,b=read()^last; rt[i]=rt[i-];
if(pos[find(rt[i],a)]==pos[find(rt[i],b)])puts(""),last=;else puts(""),last=;
}
}
return ;
}

20160623

bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版的更多相关文章

  1. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  2. bzoj3673: 可持久化并查集 by zky&&3674: 可持久化并查集加强版

    主席树可持久化数组,还挺好YY的 然而加强版要路径压缩.. 发现压了都RE 结果看了看数据,默默的把让fx的父亲变成fy反过来让fy的父亲变成fx 搞笑啊 #include<cstdio> ...

  3. 【BZOJ 3674】可持久化并查集加强版&【BZOJ 3673】可持久化并查集 by zky 用可持久化线段树破之

    最后还是去掉异或顺手A了3673,,, 并查集其实就是fa数组,我们只需要维护这个fa数组,用可持久化线段树就行啦 1:判断是否属于同一集合,我加了路径压缩. 2:直接把跟的值指向root[k]的值破 ...

  4. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  5. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  6. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  7. 3673: 可持久化并查集 by zky

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2170  Solved: 978[Submit][Status ...

  8. Bzoj 3673: 可持久化并查集 by zky(主席树+启发式合并)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Description n个集合 m个操作 操作: 1 a b 合并a,b所在集 ...

  9. bzoj 3673&3674: 可持久化并查集 by zky

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

随机推荐

  1. (八)easyexcel的使用

    使用手册:https://www.yuque.com/easyexcel/doc/easyexcel 主要注意的点就是修改监听器为通用的监听器 原监听器: package read; import j ...

  2. MySQL数据表中有自增长主键时如何插入数据

    原文链接:https://blog.csdn.net/RuobaiMEN/article/details/79794199 MySQL数据库表中有自增主键ID,当用SQL插入语句中插入语句带有ID列值 ...

  3. yii2.0数据库操作

    User::find()->all(); 此方法返回所有数据: User::findOne($id); 此方法返回 主键 id=1 的一条数据(举个例子): User::find()->w ...

  4. rust 生命周期2

    之前定义的结构体,都是不含引用的. 如果想定义含引用的结构体,请定义生命周期注解 #[warn(unused_variables)] struct ImportantExcerpt<'a> ...

  5. android 抓取native层奔溃

    使用android的breakpad工具 使用这个工具需要下载Breakpad的源码,然后进行编译,编译之后会生成两个工具 我们使用这两个工具来解析奔溃的位置.这里我们可以下载已经编译好的工具 下载地 ...

  6. 使用TimerTask创建定时任务

    使用TimerTask创建定时任务,打包之后应用于linux系统 step1:创建java项目 step2:代码实现 定时任务实现类CreateTask.java是打印操作者的名字 配置准换类Conf ...

  7. Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil

    在使用Java API操作HBase时抛出如下异常: Illegal reflective access by org.apache.hadoop.security.authentication.ut ...

  8. vs code 初始化vue项目框架

    1.首先安装npm组件  下载地址:https://nodejs.org/en/ 安装完 2.配置环境变量 3.验证是否成功 node -v npm -v 4.替换npm 输入npm install ...

  9. python在循环中追加字典

    1. 在循环中用append增加key值,最终生成全是key值的list: 2. 在循环中用append增加value值,最终生成全是value值的list: 3. 最后用zip将两个list合并成一 ...

  10. 基础的markdown用法

    首先推荐一款在线的markdown编辑器:Editor.md 一篇博客里面就是文字与图片的集合.markdown其实就是编辑文字,插入图片的工具.对于大多数人来说,学习几个标签就可以了. 标题 #** ...