LeetCode106 从中序和后序序列构造二叉树
题目描述:
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/*
算法思想:
由于后序的顺序的最后一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件我们就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。
需要小心的地方就是递归时postorder的左右index很容易写错,比如 pLeft + i - iLeft - 1, 这个又长又不好记,首先我们要记住 i - iLeft 是计算inorder中根节点位置和左边起始点的距离,然后再加上postorder左边起始点然后再减1。我们可以这样分析,如果根节点就是左边起始点的话,那么拆分的话左边序列应该为空集,此时i - iLeft 为0, pLeft + 0 - 1 < pLeft, 那么再递归调用时就会返回NULL, 成立。如果根节点是左边起始点紧跟的一个,那么i - iLeft 为1, pLeft + 1 - 1 = pLeft,再递归调用时还会生成一个节点,就是pLeft位置上的节点,为原二叉树的一个叶节点。
*/
//算法实现: class Solution {
public:
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
return buildTree(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1);
} TreeNode *buildTree(vector<int> &inorder, int iLeft, int iRight, vector<int> &postorder, int pLeft, int pRight) {
if (iLeft > iRight || pLeft > pRight)
return NULL;
TreeNode *cur = new TreeNode(postorder[pRight]);
int i = 0;
for (i = iLeft; i < inorder.size(); ++i) { //通过后序序列最后一个结点位置,在中序序列中找根节点
if (inorder[i] == cur->val)
break;
}
cur->left = buildTree(inorder, iLeft, i - 1, postorder, pLeft, pLeft + i - iLeft - 1);
cur->right = buildTree(inorder, i + 1, iRight, postorder, pLeft + i - iLeft, pRight - 1);
return cur;
}
}; /*
算法思想:
与中序遍历和前序遍历构造二叉树的过程类似。只不过对于后序遍历来说,根节点是最后一个被访问的节点。
*/
//算法实现: class Solution {
public:
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) { //以向量形式给出中序和后序序列
if(postorder.size()==0||inorder.size()==0){ //序列有一个为空,构建的树为空
return NULL;
}
if(postorder.size()!=inorder.size()){ ////序列长度不相同,构建的树为空
return NULL;
} vector<int> inorder_l,inorder_r,postorder_l,postorder_r; ////辅助空间,存放被分割开的中序和后序遍历的序列
int root_index=-1,len = postorder.size();
TreeNode* root=new TreeNode(postorder[len-1]); //根节点即后序尾结点 for(int i=0;i<len;i++){ //在中序队列中找出根节点位置
if(postorder[len-1]==inorder[i]){
root_index=i;
break;
}
} for(int i=0; i<root_index; i++) { // 左右子树的后序、中序序列
postorder_l.push_back(postorder[i]);
inorder_l.push_back(inorder[i]);
}
for(int i=root_index+1; i<inorder.size(); i++) {
postorder_r.push_back(postorder[i-1]); //这里要注意
inorder_r.push_back(inorder[i]);
}
root->left=buildTree(inorder_l, postorder_l); //递归重建左子树
root->right=buildTree(inorder_r, postorder_r); //递归重建右子树
return root;
}
};
LeetCode106 从中序和后序序列构造二叉树的更多相关文章
- LeetCode106. 从中序与后序遍历序列构造二叉树
106. 从中序与后序遍历序列构造二叉树 描述 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 示例 例如,给出 中序遍历 inorder = [9,3,15,20 ...
- [Swift]LeetCode106. 从中序与后序遍历序列构造二叉树 | Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树
105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...
- LeetCode(106):从中序与后序遍历序列构造二叉树
Medium! 题目描述: 根据一棵树的中序遍历与后序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 posto ...
- [leetcode]从中序与后序/前序遍历序列构造二叉树
从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 po ...
- Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树
Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树 Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序 ...
- Java实现 LeetCode 106 从中序与后序遍历序列构造二叉树
106. 从中序与后序遍历序列构造二叉树 根据一棵树的中序遍历与后序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序 ...
- 106 Construct Binary Tree from Inorder and Postorder Traversal 从中序与后序遍历序列构造二叉树
给定一棵树的中序遍历与后序遍历,依据此构造二叉树.注意:你可以假设树中没有重复的元素.例如,给出中序遍历 = [9,3,15,20,7]后序遍历 = [9,15,7,20,3]返回如下的二叉树: ...
- 【构建二叉树】02根据中序和后序序列构造二叉树【Construct Binary Tree from Inorder and Postorder Traversal】
我们都知道,已知中序和后序的序列是可以唯一确定一个二叉树的. 初始化时候二叉树为:================== 中序遍历序列, ======O=========== 后序遍 ...
随机推荐
- 关于VS.Net应用的图标提取方法
.Net的资源文件 VS.Net 支持三种文件类型的resource:.txt..resx..resources. system.resources 名字空间支持三种资源文件: txt 文件,只能有字 ...
- Jmeter(9)常用定时器
测试计划中元件的执行顺序依次为: 配置元件--逻辑控制器--前置处理器--定时器--取样器--后置处理器--断言--监听器 一.定时器作用域 1.定时器是在每个取样器之前执行的,无论定时器是在取样器之 ...
- sql注入之文件写入into outfile
sql注入中写入webshell的几种方式 sql注入中写入webshell的几种方式 secure_file_priv="c:/-"被注释掉或者是web路径 php.ini中的g ...
- zstd c++ string 压缩&解压
zstd 简介 维基百科定义: Zstandard(或Zstd)是由Facebook的Yann Collet开发的一个无损数据压缩算法.该名称也指其C语言的参考实现.第1版的实现于2016年8月31日 ...
- Mysql8.0新特性【详细版本】
1. 账户与安全 用户创建与授权 之前:创建用户并授权 1 grant all privileges on *.* to 'myuser'@'%' identified by '3edc#EDC'; ...
- springmvc中使用文件下载功能
项目代码:https://github.com/PeiranZhang/springmvc-fileupload 使用文件下载步骤 对请求处理方法使用void或null作为返回类型,并在方法中添加Ht ...
- Kafka消费者手动提交消息偏移
生产者每次调用poll()方法时,它总是返回由生产者写入Kafka但还没有消费的消息,如果消费者一致处于运行状态,那么分区消息偏移量就没什么用处,但是如果消费者发生崩溃或者有新的消费者加入群组,就会触 ...
- Kafka Producer TimeoutException
基本需求 程序读取HDFS上的日志发送至Kafka集群 由于日志量较大 每小时约7亿条+ 采用多线程 多producer实例发送 TPS 可达到120W+ 修改前Producer配置 val prop ...
- js下 Day02、DOM文档对象模型
一.DOM简介 Document Object Model 文档对象模型 DOM包含了所有HTML元素的属性和方法,以及访问他们的方式: #二.DOM节点 #1. 什么是节点? HTML中所有的元素都 ...
- SQL 视图 临时表 存储过程 索引 事务
视图: 视图是按照你的sql语句生成的一个虚拟的东西,本身并不占数据库的空间 创建视图 create view view_1 as select id from table_1 当你表里的数据增加或者 ...