P1004 方格取数(四维动态规划)
题目描述
设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的AA点出发,可以向下行走,也可以向右走,直到到达右下角的BB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字00)。
此人从AA点到BB点共走两次,试找出22条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数NN(表示N \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的00表示输入结束。
输出格式:
只需输出一个整数,表示22条路径上取得的最大的和。
输入输出样例
说明
NOIP 2000 提高组第四题
看成两个人走t j表示一个人的位置,k l表示另一个人的位置
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
int Map[][];
int dp[][][][];
int main()
{
int n;
cin>>n;
memset(Map,,sizeof(Map));
int x,y,w;
while(scanf("%d%d%d",&x,&y,&w)!=EOF)
{
if(x==)
{
break;
}
Map[x][y]=w;
}
for(int t=;t<=n;t++)
{
for(int j=;j<=n;j++)
{
for(int k=;k<=n;k++)
{
for(int l=;l<=n;l++)
{ dp[t][j][k][l]=max(max(dp[t-][j][k-][l],dp[t][j-][k-][l]),max(dp[t][j-][k][l-],dp[t-][j][k][l-]))+Map[t][j]+Map[k][l];
if(t==k&&j==l)
{
dp[t][j][k][l]-=Map[t][j];
}
}
}
}
}
cout<<dp[n][n][n][n]; return ;
}
P1004 方格取数(四维动态规划)的更多相关文章
- 洛谷P1004 方格取数-四维DP
题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...
- P1004 方格取数(四维dp)
P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...
- [动态规划]P1004 方格取数
---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- P1004 方格取数——奇怪的dp
P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 洛谷P1004 方格取数
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...
- P1004方格取数
这是提高组得一道动态规划题,也是学习y氏思考法的第一道题. 题意为给定一个矩阵,里面存有一些数,你从左上角开始走到右下角,另一个人从右下角开始走到左上角,使得两个人取数之和最大,当然一个数只可以取走一 ...
随机推荐
- 022_go语言中的协程
代码演示 package main import "fmt" func f(from string) { for i := 0; i < 3; i++ { fmt.Print ...
- 配置Django-TinyMCE组件支持上传图片功能
Django自带的Admin后台,好用,TinyMCE作为富文本编辑器,也蛮好用的,这两者结合起来在做博客的时候很方便(当然博客可能更适合用Markdown来写),但是Django-TinyMCE这个 ...
- 【Python笔记】2020年7月22日练习=[定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程的两个解]
学习教程:廖雪峰-Python教程-函数-函数定义 学习记录:[定义一个函数quadratic(a, b, c),接收3个参数,返回一元二次方程的两个解] 学习心得: 1.对问题进行判断分析后再下手. ...
- XCTF-WEB-新手练习区(9-12)笔记
9:xff_referer X老师告诉小宁其实xff和referer是可以伪造的. 界面显示需要我们 添加X-Forwarded-For:123.123.123.123 添加Rerferer:http ...
- 【模式识别与机器学习】——4.3离散K-L变换
全称:Karhunen-Loeve变换(卡洛南-洛伊变换) 前面讨论的特征选择是在一定准则下,从n个特征中选出k个来反映原有模式. 这种简单删掉某n-k个特征的做法并不十分理想,因为一般来说,原来的n ...
- 商业分析-04行为&业务相关数据指标
[访问深度]用户对产品的了解程度 [弹出率] 弹出率是基于访问回话的 而不是基于页面的,上图中1 4 6 是属于弹出
- C#LeetCode刷题之#172-阶乘后的零(Factorial Trailing Zeroes)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3854 访问. 给定一个整数 n,返回 n! 结果尾数中零的数量. ...
- 苹果TF上架的iOS应用怎么下载
苹果TF上架的iOS应用怎么下载 苹果TF上架的iOS应用是无法通过App Store搜索到的,需要用户先从App Store中搜索下载testflight内测商店.当开发者进行苹果TF上架成功以后会 ...
- 什么是P,NP和NPC问题?
P问题,NP问题,NPC问题?这些都是计算机科学领域,关于算法方面的术语.在认识这些术语之前,建议同学们先认真学习一下算法的时间复杂度,因为算法的时间复杂度与P,NP和NPC问题高度相关. 什么是P问 ...
- Vue.js中传值给子部件及触发动作的问题
最近研究一个用vue.js做的程序并修改增加功能.其中用到传值给子部件等问题. template中有个子部件: <template> ...... <child-form v-if ...