题目描述

设有N \times NN×N的方格图(N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00。如下图所示(见样例):

A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B

某人从图的左上角的AA点出发,可以向下行走,也可以向右走,直到到达右下角的BB点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字00)。
此人从AA点到BB点共走两次,试找出22条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:

输入的第一行为一个整数NN(表示N \times NN×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的00表示输入结束。

输出格式:

只需输出一个整数,表示22条路径上取得的最大的和。

输入输出样例

输入样例#1: 复制

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1: 复制

67

说明

NOIP 2000 提高组第四题

看成两个人走t j表示一个人的位置,k l表示另一个人的位置

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
int Map[][];
int dp[][][][];
int main()
{
int n;
cin>>n;
memset(Map,,sizeof(Map));
int x,y,w;
while(scanf("%d%d%d",&x,&y,&w)!=EOF)
{
if(x==)
{
break;
}
Map[x][y]=w;
}
for(int t=;t<=n;t++)
{
for(int j=;j<=n;j++)
{
for(int k=;k<=n;k++)
{
for(int l=;l<=n;l++)
{ dp[t][j][k][l]=max(max(dp[t-][j][k-][l],dp[t][j-][k-][l]),max(dp[t][j-][k][l-],dp[t-][j][k][l-]))+Map[t][j]+Map[k][l];
if(t==k&&j==l)
{
dp[t][j][k][l]-=Map[t][j];
}
}
}
}
}
cout<<dp[n][n][n][n]; return ;
}

P1004 方格取数(四维动态规划)的更多相关文章

  1. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  2. P1004 方格取数(四维dp)

    P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...

  3. [动态规划]P1004 方格取数

    ---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 ...

  4. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  5. P1004 方格取数——奇怪的dp

    P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...

  6. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  7. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

  8. 洛谷P1004 方格取数

    网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...

  9. P1004方格取数

    这是提高组得一道动态规划题,也是学习y氏思考法的第一道题. 题意为给定一个矩阵,里面存有一些数,你从左上角开始走到右下角,另一个人从右下角开始走到左上角,使得两个人取数之和最大,当然一个数只可以取走一 ...

随机推荐

  1. Python3,逻辑运算符

    优先级 ()>not>and>or 1.or 在python中,逻辑运算符or,x or y, 如果x为True则返回x,如果x为False返回y值.因为如果x为True那么or运算 ...

  2. SpringBoot实现发送邮件

    1.QQ邮箱发送邮件设置 首先登录QQ邮箱>>>登录成功后找到设置>>>然后找到邮箱设置>>>点击账户>>>找到POP3|SMT ...

  3. Azure DevOps+Docker+Asp.NET Core 实现CI/CD(二.创建CI持续集成管道)

    前言 本文主要是讲解如何使用Azure DevOps+Docker 来实现持续集成Asp.NET Core项目(当然 也可以是任意项目). 上一篇: Azure DevOps+Docker+Asp.N ...

  4. [机器学习 ]PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做

    PCA降维--两种实现 : SVD或EVD. 强力总结. 在鸢尾花数据集(iris)实做 今天自己实现PCA,从网上看文章的时候,发现有的文章没有搞清楚把SVD(奇异值分解)实现和EVD(特征值分解) ...

  5. Django-model模型中Field属性类别及选项

    参考:[Django官方文档] Django所使用模型中一些属性类别及选项(Field and Options) 1. Models Field 各种类型分别对应数据库中的各种类型,这是Django对 ...

  6. C#LeetCode刷题之#682-棒球比赛(Baseball Game)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4028 访问. 你现在是棒球比赛记录员. 给定一个字符串列表,每个 ...

  7. DRF基础操作流程

    Django Rest_Framework 核心思想: 缩减编写api接口的代码 -->DRF Django REST framework是一个建立在Django基础之上的Web 应用开发框架, ...

  8. DeepLab系列

    论文: (DeepLabV1)Semantic image segmentation with deep convolutional nets and fully connected CRFs (De ...

  9. moonlight不显示鼠标指针

    多显示屏导致moonlight不显示鼠标指针, 使用的时候关闭其他显示屏,只使用一个显示屏,就可以正常显示了.

  10. G4560 HD610安装黑苹果Hakintosh

    这一篇主要是写给使用G4560笔记本折腾黑苹果的朋友. 我折腾了几天黑苹果,发现怎么也无法成功,最后我才知道HD610现在还不支持黑苹果. 由于大多数笔记本不支持屏蔽核显,这意味着要想使用黑苹果必须要 ...