I

I

车II

车II


题目描述

有一个

n

m

n*m

n∗m的棋盘

(

n

m

80

,

n

m

80

)

(n、m≤80,n*m≤80)

(n、m≤80,n∗m≤80)要在棋盘上放

k

(

k

20

)

k(k≤20)

k(k≤20)个棋子,使得任意两个棋子不相邻。求合法的方案总数。


输入

n

,

m

,

k

n,m,k

n,m,k


输出

方案总数


样例输入

3 3 2

样例输出

24

题目解析

又双叒叕是一道状压DP的题。和相比,这道题的数据就大了许多

n

m

80

n、m≤80

n、m≤80。然而

n

m

80

n*m≤80

n∗m≤80,所以还是可以用状压来写。
首先,我们用一个

D

F

S

DFS

DFS来枚举他所有的状态

void dfs(int ans, int pos, int flag)
{
if(pos>n)
{
s[++num]=ans;
c[num]=flag;
return ;
}
dfs(ans, pos+1, flag);
dfs(ans+(1<<pos-1), pos+2, flag+1);
}

然后就开始

D

P

DP

DP;用两个变量来枚举状态,分别为当前状态和转移状态,要想它们之间能够互相转移,就必须有一个为

0

0

0,然后在枚举放的棋子个数。


code

#include<stdio.h>

#include<iostream> 

#include<algorithm>

using namespace std;

int n, m, k, num;
int s[10005], c[10005], f[85][1<<9][255]; void dfs(int ans, int pos, int flag)
{
if(pos>n)
{
s[++num]=ans;
c[num]=flag;
return ;
}
dfs(ans, pos+1, flag);
dfs(ans+(1<<pos-1), pos+2, flag+1);
} int main ()
{
scanf ("%d%d%d", &n, &m, &k);
if (n>m) swap(n,m);
dfs(0, 1, 0);
for (int i=1; i<=num; ++i) f[1][s[i]][c[i]]=1;
for (int i=2; i<=m; ++i)
for (int j=1; j<=num; ++j)
for (int r=1; r<=num; ++r)
if (!(s[j]&s[r]))
{
for (int l=0; l<=k; ++l)
if (l>=c[j])
f[i][s[j]][l]+=f[i-1][s[r]][l-c[j]];
}
int ans=0;
for (int i=1; i<=num; ++i) ans+=f[m][s[i]][k];
printf("%d",ans);
return 0;
}

[状压DP]车II的更多相关文章

  1. [状压DP]车

    车 车 车 题目描述 在 n ∗ n n*n n∗n( n ≤ 20 n≤20 n≤20)的方格棋盘上放置 n n n个车(可以攻击所在行.列),有些格子不能放,求使它们不能互相攻击的方案总数. 输入 ...

  2. 状压DP【p2622】 关灯问题II

    题目描述--->P2622 关灯问题II 没用的话: 首先第一眼看到题,嗯?n<=10?搜索? 满心欢喜地敲了一通搜索. 交上去,Wa声一片? 全部MLE! 这么坑人神奇? 一想,可能是爆 ...

  3. 关灯问题II 状压DP

    关灯问题II 状压DP \(n\)个灯,\(m\)个按钮,每个按钮都会对每个灯有不同影响,问最少多少次使灯熄完. \(n\le 10,m\le 100\) 状压DP的好题,体现了状压的基本套路与二进制 ...

  4. [状压DP]关灯问题II

    关 灯 问 题 I I 关灯问题II 关灯问题II 题目描述 现有n盏灯,以及 m m m个按钮.每个按钮可以同时控制这 n n n盏灯--按下了第 i i i个按钮,对于所有的灯都有一个效果.按下i ...

  5. HDU 6149 Valley Numer II 状压DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6149 题意:中文题目 解法:状压DP,dp[i][j]代表前i个低点,当前高点状态为j的方案数,然后枚 ...

  6. HDU 6149 Valley Numer II(状压DP)

    题目链接 HDU6149 百度之星复赛的题目……比赛的时候并没有做出来. 由于低点只有15个,所以我们可以考虑状压DP. 利用01背包的思想,依次考虑每个低点,然后枚举每个状态. 在每个状态里面任意枚 ...

  7. 洛谷 P2622 关灯问题II【状压DP】

    传送门:https://www.luogu.org/problemnew/show/P2622 题面: 题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的 ...

  8. 状压dp专题复习

    状压dp专题复习 (有些题过于水,我直接跳了) 技巧总结 : 1.矩阵状压上一行的选择情况 \(n * 2^n\) D [BZOJ2734][HNOI2012]集合选数 蒻得不行的我觉得这是一道比较难 ...

  9. [状压DP]炮兵阵地

    炮 兵 阵 地 炮兵阵地 炮兵阵地 题目描述 司令部的将军们打算在 N ∗ M N*M N∗M的网格地图上部署他们的炮兵部队.一个 N ∗ M N*M N∗M的地图由 N N N行 M M M列组成, ...

随机推荐

  1. how to delete the virtual dom that created in memory using js

    how to delete the virtual dom that created in memory using js const virtualDomConvert = (filename = ...

  2. Swift 5.1

    Swift 5.1 WebView & WKWebView https://developer.apple.com/swift-playgrounds/ https://developer.a ...

  3. 2018-1-6-IDEA快速代码生成

    2018-1-6-IDEA快速代码生成 Java 自动生成 Intellij IDEA 利用IDEA编辑器的Live Templates可以实现自定义方法.属性.注释等,下面是我自己的常用模板. 属性 ...

  4. ffmpeg:为视频添加静态水印

    在ffmpeg中,添加水印需要用overlay滤镜,这是一个复杂滤镜,因为它需要两个输入,默认第一个输入是主画面,第二输入为水印,先执行一个简单的看看. 下面有两个文件,一个是可爱的大雄兔,一个是可爱 ...

  5. 从微信小程序到鸿蒙js开发【15】——JS调用Java

    鸿蒙入门指南,小白速来!0基础学习路线分享,高效学习方法,重点答疑解惑--->[课程入口] 目录:1.新建一个Service Ability2.完善代码逻辑3.JS端远程调用4.<从微信小 ...

  6. Django之csrf中间件及auth模块使用

    目录 一.基于配置文件的编程思想 1. importlib 模块 2. 配置文件 二.跨站请求伪造(csrf) 1.csrf简介以及由来 2.Django中的csrf中间件如何使用 2.1 普通for ...

  7. Cassandra数据操作管理工具tableplus

    一.概述 Cassandra是一个NoSQL数据库,具有类SQL CQL入口,基本语法与SQL保持一致.其实笔者认为 Cassandra的自带的cqlsh已经满足本的需求:如: 但是用习惯了数据库操作 ...

  8. LeetCode113. 路径总和 II

    原题链接 1 class Solution: 2 def pathSum(self, root: TreeNode, sum: int) -> List[List[int]]: 3 ans,tm ...

  9. 记录core中GRPC长连接导致负载均衡不均衡问题 二,解决长连接问题

    题外话: 1.这几天收到蔚来的面试邀请,但是自己没做准备,并且远程面试,还在上班时间,再加上老东家对我还不错.没想着换工作,导致在自己工位上做算法题不想被人看见,然后非常紧张.估计over了.不过没事 ...

  10. Prometheus自定义指标

    1.  自定义指标 为了注册自定义指标,请将MeterRegistry注入到组件中,例如: public class Dictionary { private final List<String ...