题意:有N个方块,M个操作{“C x”:查询方块x上的方块数;“M x y”:移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}。输出相应的答案。

解法:带权并查集。每堆方块作为一个集合,维护3个数组:fa[x]表示x方块所在堆的最顶部的方块;d[x]表示x方块所在堆的最底部的方块;f[x]表示x方块方块x上的方块数。

注意——一般画树理解,这个图用方块理解好一点,例子:【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和) 。要想原本fy是恰好放在x所在联盟的最底部的点下面的,只是为了减少时间复杂度才把它提到为fx的子节点。因此式子仍因按原来的图形来写。

P.S.这个虽然是我做的第一道题,但我搞错了,这不是最佳的模版题!见:【poj 1962】Corporative Network(图论--带权并查集 模版题)

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=30010,M=100010;
8 int fa[N],f[N],d[N];
9 char s[3];
10
11 int ffind(int x)
12 {//查找+更新 关于x的所有值
13 if (fa[x]!=x)
14 {
15 int fx=fa[x];
16 fa[x]=ffind(fx);
17 f[x]+=f[fx];
18 d[x]=d[fx];
19 }
20 return fa[x];
21 }
22 int main()
23 {
24 int n,m,x,y;
25 scanf("%d",&m);
26 for (int i=1;i<=N-10;i++) fa[i]=d[i]=i,f[i]=0;
27 while (m--)
28 {
29 scanf("%s",s);
30 if (s[0]=='M')
31 {
32 scanf("%d%d",&x,&y);
33 int fx=ffind(x),fy=ffind(y);//无论如何,将x,y转化为fx和fy来操作,x,y不需要现在就更新完
34 fa[fy]=fx;//mainly 修改fy
35 ffind(d[fx]);//更新了之后才可用
36 f[fy]=f[d[fx]]+1;//画树理解时,要想原本fy是恰好放在d[fx]下面的,只是为了减少时间复杂度所以把它提到为fx的子节点
37 d[fx]=d[fy];//修改fx
38 }
39 else
40 {
41 scanf("%d",&x);
42 int dx=d[ffind(x)];
43 ffind(dx);//更新了才有保障
44 printf("%d\n",f[dx]-f[x]);
45 }
46 }
47 return 0;
48 }

【poj 1988】Cube Stacking(图论--带权并查集)的更多相关文章

  1. POJ 1988 Cube Stacking( 带权并查集 )*

    POJ 1988 Cube Stacking( 带权并查集 ) 非常棒的一道题!借鉴"找回失去的"博客 链接:传送门 题意: P次查询,每次查询有两种: M x y 将包含x的集合 ...

  2. POJ 1988 Cube Stacking 【带权并查集】

    <题目链接> 题目大意: 有几个stack,初始里面有一个cube.支持两种操作: 1.move x y: 将x所在的stack移动到y所在stack的顶部. 2.count x:数在x所 ...

  3. POJ 1988 Cube Stacking(带权并查集)

    Cube Stacking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 23678   Accepted: 8299 Ca ...

  4. poj 1988 Cube Stacking【带权并查集】

    设s[x]为x所在栈里的个数,c[x]表示x下面有几个,合并的时候直接合并s,然后路径压缩的时候更新c即可 #include<iostream> #include<cstdio> ...

  5. 【POJ 1988】 Cube Stacking (带权并查集)

    Cube Stacking Description Farmer John and Betsy are playing a game with N (1 <= N <= 30,000)id ...

  6. 【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)

    题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离.问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则 ...

  7. 【poj 1182】食物链(图论--带权并查集)

    题意:有3种动物A.B.C,形成一个"A吃B, B吃C,C吃A "的食物链.有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类. ...

  8. 【poj 1962】Corporative Network(图论--带权并查集 模版题)

    P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...

  9. 【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)

    题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账. 解法:带权并查集+前缀和.   判断账本真假是通过之前可算到的答案与当前读入的值是否 ...

随机推荐

  1. Spark学习进度11-Spark Streaming&Structured Streaming

    Spark Streaming Spark Streaming 介绍 批量计算 流计算 Spark Streaming 入门 Netcat 的使用 项目实例 目标:使用 Spark Streaming ...

  2. Linux Clone函数

    Linux Clone函数 之前某一次有过一次面试,问了内核中是怎么创建命名空间的? 下面就来扒一扒clone的精髓,以及如何通过它创建命名空间. 目录 Linux Clone函数 使用clone创建 ...

  3. Java 用java GUI写一个贪吃蛇小游戏

    目录 主要用到 swing 包下的一些类 上代码 游戏启动类 游戏数据类 游戏面板类 代码地址 主要用到 swing 包下的一些类 JFrame 窗口类 JPanel 面板类 KeyListener ...

  4. 彻底搞懂MySQL为什么要使用B+树索引

    目录 MySQL的存储结构 表存储结构 B+树索引结构 B+树页节点结构 为什么要用B+树索引 二叉树 多叉树 B树 B+树 搞懂这个问题之前,我们首先来看一下,MySQL表的存储结构 MySQL的存 ...

  5. ctfhub技能树—web前置技能—http协议—请求方式

    打开靶机环境(每次打开都要30金币,好心疼啊) 题目描述为"请求方式" HTTP的请求方式共有八种 1.OPTIONS 返回服务器针对特定资源所支持的HTTP请求方法,也可以利用向 ...

  6. 天天用SpringBoot居然还不知道它的自动装配的原理?

    引言 最近有个读者在面试,面试中被问到了这样一个问题"看你项目中用到了springboot,你说下springboot的自动配置是怎么实现的?"这应该是一个springboot里面 ...

  7. APM调用链产品对比

    APM调用链产品对比 随着企业经营规模的扩大,以及对内快速诊断效率和对外SLA(服务品质协议,service-level agreement)的追求,对于业务系统的掌控度的要求越来越高,主要体现在: ...

  8. 给dtcms增加模板自动生成功能

    作为dtcms的使用者你是不是像我一样,也在不停的修改模板之后要点击生成模板浪费了很多开发模板的时间? 那就跟我一起给dtcms增加一个开发者模式,当模板修改完成之后,直接刷新页面就能看到效果,而不再 ...

  9. ATtiny3217 x WS2812B梦幻联动

    TinyAVR 1-series是Microchip于2018年推出的AVR单片机系列,定位是新一代的8位单片机,ATtiny3217是其中最高端的一款.相比于ATmega328P那个时代的AVR,A ...

  10. mybatis框架整合及逆向工程

    mybatis框架整合及逆向工程 一.三大框架整合 ​ 整合SSM框架 1.导入pom文件 1.导入spring的pom依赖 <?xml version="1.0" enco ...