Codeforces Round #642 (Div. 3)
比赛链接:https://codeforces.com/contest/1353
A - Most Unstable Array
题意
构造大小为 $n$,和为 $m$ 的非负数组 $a$,使得相邻元素之差的绝对值之和最大。
题解
稍加推导发现:将 $m$ 拆分和单独用 $m$ 结果是一样的,所以可以直接用 $0$ 和 $m$ 构造。
代码
#include <bits/stdc++.h>
using namespace std; void solve() {
int n, m; cin >> n >> m;
if (n == 1) cout << 0 << "\n";
else if (n == 2) cout << m << "\n";
else cout << 2 * m << "\n";
} int main() {
int t; cin >> t;
while (t--) solve();
}
B - Two Arrays And Swaps
题意
有大小为 $n$ 的数组 $a$ 和 $b$,最多可以交换 $a$ 中某一元素和 $b$ 中某一元素 $k$ 次,问数组 $a$ 中元素的最大和为多少。
题解
取 $a$ 中 $n$ 个和 $b$ 中前 $k$ 大个元素中前 $n$ 大个元素即可。
代码
#include <bits/stdc++.h>
using namespace std; void solve() {
int n, k; cin >> n >> k;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<int> b(n);
for (int i = 0; i < n; i++) {
cin >> b[i];
}
sort(b.rbegin(), b.rend());
for (int i = 0; i < k; i++) {
a.push_back(b[i]);
}
sort(a.rbegin(), a.rend());
cout << accumulate(a.begin(), a.begin() + n, 0) << "\n";
} int main() {
int t; cin >> t;
while (t--) solve();
}
C - Board Moves
题意
有一边长为奇数 $n$ 的正方形网格,每一次一个方块可以移到相邻八个位置中的某一个,问所有方块移到一个位置最少需要移动几次。
题解
从中心考虑:中心外第 $i$ 圈的每个方块移到中心需要 $i$ 步。
代码
#include <bits/stdc++.h>
using ll = long long;
using namespace std; void solve() {
int n; cin >> n;
ll ans = 0, a = 3, b = 1;
for (ll i = 1; i <= (n - 1) / 2; i++) {
ans += (a * a - b * b) * i;
a += 2, b += 2;
}
cout << ans << "\n";
} int main() {
int t; cin >> t;
while (t--) solve();
}
D - Constructing the Array
题意
有一大小为 $n$ 初始时每个元素均为 $0$ 的数组,第 $i$ 次操作如下:
- 选取最长最靠左的一段连续为 $0$ 的子区间
- 如果区间长度为奇数,$a_{\frac{l+r}{2}} = i$
- 如果区间长度为偶数,$a_{\frac{l+r-1}{2}} = i$
输出进行 $n$ 次操作后的数组。
题解
递归分解区间,按照题意排序赋值即可。
代码
#include <bits/stdc++.h>
using namespace std; vector<pair<int, int>> v; int cal(int l, int r) {
return ((r - l + 1) % 2 == 1) ? (l + r) / 2 : (l + r - 1) / 2;
} void recur(int l, int r) {
if (l > r) return;
v.push_back({l, r});
recur(l, cal(l ,r) - 1);
recur(cal(l ,r) + 1, r);
} void solve() {
v.clear();
int n; cin >> n;
recur(1, n);
sort(v.begin(), v.end(), [&] (pair<int, int> a, pair<int, int> b) {
if (a.second - a.first != b.second - b.first)
return a.second - a.first > b.second - b.first;
else
return a.first < b.first;
});
int a[n + 1] = {};
for (int i = 0; i < n; i++)
a[cal(v[i].first ,v[i].second)] = i + 1;
for (int i = 1; i <= n; i++)
cout << a[i] << " \n"[i == n];
} int main() {
int t; cin >> t;
while (t--) solve();
}
E - K-periodic Garland
题意
将一个 $01$ 串变为相邻两个 $1$ 之间周期为 $k$ 的字符串最少需要改变多少字符。
题解
把原字符串分为 $k$ 个周期子串,每次考虑一个子串时需要将其他子串中的 $1$ 都变为 $0$,然后对当前周期子串进行 $dp$,$dp_i$ 表示周期子串中位置 $i$ 的字符变为 $1$,之前的字符变为合法至少需要改变多少字符。
代码
#include <bits/stdc++.h>
using namespace std; int cal(const string &s) {
int n = s.size();
int all = count(s.begin(), s.end(), '1');
int dp[n] = {};
int pref = 0;
int ans = all;
for (int i = 0; i < n; i++) {
int cur = (s[i] == '1');
pref += cur;
dp[i] = 1 - cur;
if (i > 0) dp[i] += min(dp[i - 1], pref - cur);
ans = min(ans, dp[i] + all - pref);
}
return ans;
} void solve() {
int n, k; cin >> n >> k;
string s; cin >> s;
int tot_one = count(s.begin(), s.end(), '1');
vector<string> v(k);
for (int i = 0; i < k; i++)
for (int j = i; j < n; j += k)
v[i] += s[j];
int ans = 1e9;
for (auto &it : v)
ans = min(ans, cal(it) + tot_one - count(it.begin(), it.end(), '1'));
cout << ans << "\n";
} int main() {
int t; cin >> t;
while (t--) solve();
}
F - Decreasing Heights
题意
有一个 $n * m$ 、高度不等的三维坐标系,从 $a_{00}$ 走到 $a_{{(n-1)}{(m-1)}}$,每次只能从 $a_{ij}$ 向 $a_{(i+1)j}$ 或 $a_{i(j+1)}$ 行走,且 $a_{xy} - a_{ij} = 1$,每个位置的高度可以不限次地 $-1$,问最少需要减少多少高度。
题解
如果 $a_{00}$ 是确定的,那么每个点 $a_{ij}$ 的高度应为 $a_{00} + i + j$,因为每移动一格高度都会 $+1$,这与路径无关。
那么,根据状态转移方程:
$dp_{ij} = min(dp_{{(i - 1)}{j}} + dp_{{i}{(j - 1)}}) + a_{ij} - (a_{00} + i + j)$
推导即可。
但是 $a_{00}$ 需要变化的高度是不确定,注意到如果有一条从 $a_{00}$ 到 $a_{{(n-1)}{(m-1)}}$ 的最优路径,那么这条路径上一定有点的高度不需要减少,因为如果都需要减少,那么可以增加 $a_{00}$ 的高度来抵消共同减少的部分,如果增加后的高度高于 $a_{00}$,呢么 $a_{00}$ 不需要减少,这条路径上的的高度都需要减少,即仍有点的高度不需要减少。
至此,可以枚举高度不变化的点反推出 $a_{00}$ 的高度,由此得解。
代码
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
const ll INF = 1e18; void solve() {
int n, m; cin >> n >> m;
ll a[n][m] = {};
for (int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
cin >> a[i][j];
ll ans = INF;
for (int x = 0; x < n; x++) {
for(int y = 0; y < m; y++) {
ll a_00 = a[x][y] - x - y;
if (a_00 > a[0][0]) continue;
ll dp[n][m] = {};
fill(*dp, *dp + n * m, INF);
dp[0][0] = a[0][0] - a_00;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ll a_ij = a_00 + i + j;
if (a_ij > a[i][j]) continue;
if (i > 0) dp[i][j] = min(dp[i][j], dp[i - 1][j] + a[i][j] - a_ij);
if (j > 0) dp[i][j] = min(dp[i][j], dp[i][j - 1] + a[i][j] - a_ij);
}
}
ans = min(ans, dp[n - 1][m - 1]);
}
}
cout << ans << "\n";
} int main() {
int t; cin >> t;
while (t--) solve();
}
Codeforces Round #642 (Div. 3)的更多相关文章
- Codeforces Round #642 (Div. 3) D. Constructing the Array (优先队列)
题意:有一个长度为\(n\)元素均为\(0\)的序列,进行\(n\)次操作构造出一个新序列\(a\):每次选择最长的连续为\(0\)的区间\([l,r]\),使得第\(i\)次操作时,\(a[\fra ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
随机推荐
- 为什么 StringBuffer 有 toStringCache 而 StringBuilder 没有?
对于 StringBuilder 和 StringBuffer 的源码会发现,StringBuffer 中有一个叫 toStringCache 的成员变量,用来缓存 toString() 方法返回字符 ...
- 记一次使用Asp.Net Core WebApi 5.0+Dapper+Mysql+Redis+Docker的开发过程
#前言 我可能有三年没怎么碰C#了,目前的工作是在全职搞前端,最近有时间抽空看了一下Asp.net Core,Core版本号都到了5.0了,也越来越好用了,下面将记录一下这几天以来使用Asp.Net ...
- 【Flutter】容器类组件之Scaffold、TabBar、底部导航
前言 一个完整的路由页可能会包含导航栏.抽屉菜单(Drawer)以及底部Tab导航菜单等.Flutter Material组件库提供了一些现成的组件来减少开发任务.Scaffold是一个路由页的骨架, ...
- 【JDBC核心】commons-dbutils
commons-dbutils 简介 commons-dbutils 是 Apache 组织提供的一个开源 JDBC 工具类库,它是对 JDBC 的简单封装,学习成本极低,并且使用 commons-d ...
- 常用的N个网站建议收藏
类型网站路径学习资源及博客论坛网站 书栈网:https://www.bookstack.cn 52 download: http://www.52download.cn/wpcourse/ 菜鸟教程: ...
- Docker 介绍和安装(一)
# 下载阿里云的 Centos7 的docker.repo # step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-pers ...
- 2019 Eclipse的下载与安装教程
Eclipse 是一个开放源代码的.基于Java的可扩展开发平台,可以免费下载使用. 首先我们先进入这个软件的官网:https://www.eclipse.org/ 点击这个网页download下载: ...
- kubernets之secret资源
一 对于一些保密度比较高的文件,k8s又是如何存储的呢? 针对那些保密度比较高的配置文件,例如证书以及一些认证配置不能直接存储在configmap中,而是需要存储在另外一种资源中,需要对存储在里面的 ...
- 利用iptables防火墙保护web服务器
实例:利用iptables防火墙保护web服务器 防火墙--->路由器-->交换机-->pc机 配置之前,清空下已有的规则,放在规则冲突不生效 工作中,先放行端口写完规则,再DROP ...
- 【Azure 存储服务】Python模块(azure.cosmosdb.table)直接对表存储(Storage Account Table)做操作示例
什么是表存储 Azure 表存储是一项用于在云中存储结构化 NoSQL 数据的服务,通过无结构化的设计提供键/属性存储. 因为表存储无固定的数据结构要求,因此可以很容易地随着应用程序需求的发展使数据适 ...