【noi 2.6_666】放苹果 & 【noi 2.6_8467】鸣人的影分身(DP)
这题其实在2.6前面的专题也有出现过,我还以为我有写,结果发现,并没有。于是就现在写了。这2题其实重复了......我就按放苹果的来说。
题意:把N个苹果放在M个盘子里,允许有的盘子空着不放,问共有多少种不同的分法。
解法:f[i][j]表示把 i 个苹果放在 j 个盘子的方案数,分有空盘子和无空盘子的情况DP。
(1)至少有1个空盘子:f[i][j]=f[i][j-1]
(2)没有空盘子:i≥j,则再 +f[i-j][j]。
而对于f[i-j][j]有 2 种理解——所有盘子中都取走1个苹果的方案数,或先各用1个苹果把所有盘子填满再放苹果的方案数。--至于这里为什么是“1”就要想想动态规划的基本性质了。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 int f[15][15];
8
9 int main()
10 {
11 int T;
12 scanf("%d",&T);
13 while (T--)
14 {
15 int n,m;
16 scanf("%d%d",&n,&m);
17 memset(f,0,sizeof(f));
18 for (int j=0;j<=m;j++) f[0][j]=1;
19 for (int i=1;i<=n;i++)
20 for (int j=1;j<=m;j++)
21 {
22 f[i][j]=f[i][j-1];
23 if (i>=j) f[i][j]+=f[i-j][j];
24 }
25 printf("%d\n",f[n][m]);
26 }
27 return 0;
28 }
【noi 2.6_666】放苹果 & 【noi 2.6_8467】鸣人的影分身(DP)的更多相关文章
- NOI 8467 鸣人的影分身
http://noi.openjudge.cn/ch0206/8467/ 描述 在火影忍者的世界里,令敌人捉摸不透是非常关键的.我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例 ...
- 刷题向》DP》放苹果 (normal)
这篇博客可能字数比较多,而且很难讲清楚,我会努力给你们讲清楚: 首先,放苹果是一道DP,之所以难,是因为很难想到,我的确有同学用三维数组做出来,然而三维的的确比二维好理解,但三维复杂度太高,虽然DP一 ...
- OpenJudge 666:放苹果 // 瞎基本DP
666:放苹果 总时间限制: 1000ms 内存限制: 65536kB 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1 ...
- oj放苹果
题目描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. 输入 每个用例包含二个整数M和N.0<=m< ...
- POJ 1664 放苹果
放苹果 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24985 Accepted: 15908 Description ...
- POJ --- 1164 放苹果
放苹果 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24947 Accepted: 15887 Description ...
- POJ——放苹果
4:放苹果 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示) ...
- poj1664放苹果(递归)
题目链接:http://poj.org/problem?id=1664 放苹果 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- 放苹果(poj1664递归)
ti放苹果 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24392 Accepted: 15513 Descripti ...
随机推荐
- Linux tar压缩和解压
经常会忘记 tar 压缩和解压命令的使用,故记下来. 1. 打包压缩 tar -zcvf pack.tar.gz pack/ #打包压缩为一个.gz格式的压缩包 tar -jcvf pack.tar. ...
- MySQL where 条件字句查询
where 条件字句 搜索条件可由一个或多个逻辑表达式组成 , 结果一般为布尔值 逻辑运算符 运算符 语法 描述 and && a and b a && b 逻辑与 两 ...
- Tippy.js - 免费开源且高度可定制的气泡提示独立组件
推荐一个非常优秀的 web 气泡提示独立UI组件. 介绍 Tippy.js 是一款用于Web的完整工具提示,弹出菜单,下拉菜单和菜单解决方案.适用于鼠标,键盘和触摸输入. 特点 超轻量的纯 javas ...
- SQL -去重Group by 和Distinct的效率
经实际测试,同等条件下,5千万条数据,Distinct比Group by效率高,但是,这是有条件的,这五千万条数据中不重复的仅仅有三十多万条,这意味着,五千万条中基本都是重复数据. 为了验证,重复数据 ...
- ubuntu20.04并添加桌面快捷方式,以安装火狐可浏览器开发版(水狐)为例
@参考原文 1. 下载linux版源文件 从火狐官网下载linux版的水狐源文件压缩包,@火狐浏览器开发版(水狐)下载地址. 2. 解压下载源文件 将下载的"tar.bz2"文件解 ...
- 【Android】关于连续多次点击控件的控制方案(新建监听类)
参考:防止Android过快点击造成多次事件的三种方法_胖胖的博客-CSDN博客 实现逻辑很简单: 设置限定时间 在用户点击时开始计时 若计时未超过限定时间,则不允许触发点击事件 因还未学习过Rxja ...
- 解决Python内CvCapture视频文件格式不支持问题
解决Python内CvCapture视频文件格式不支持问题 在读取视频文件调用默认的摄像头cv.VideoCapture(0)会出现下面的视频格式问题 CvCapture_MSMF::initStre ...
- Py变量,递归,作用域,匿名函数
局部变量与全局变量 全局变量:全局生效的变量,在顶头的,无缩进的定义的变量. 局部变量:函数内生效的变量,在函数内定义的变量. name='1fh' def changename(): name='s ...
- USB2514集线器调试总结
一般的MCU不会留有太多的USB口,但在实际项目中又会遇到需要很多个USB口的情况,这时就会用到USB集线器来扩展USB口了.USB2514这个芯片是我在工作中用的比较多的,但是问题很多,从来没有调稳 ...
- mybatis缓存源码分析之浅谈缓存设计
本文是关于mybatis缓存模块设计的读后感,关于缓存的思考,关于mybatis的缓存源码详细分析在另一篇文章:https://www.cnblogs.com/gmt-hao/p/12448896.h ...