先用kruskal处理出一个最小生成树

对于非树边,倍增找出两端点间的最大边权-1就是答案

对于树边,如果它能被替代,就要有一条非树边,两端点在树上的路径覆盖了这条树边,而且边权不大于这条树边

这里可以树剖来做,但是不想用..

如果先把非树边从小到大排序然后去覆盖树边,那么一条树边只需要被覆盖一次

所以可以用一个并查集来把父子边被覆盖的点合到一起,在合并之前记下来这次覆盖的边权,下次再覆盖的时候直接跳过去就可以

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=2e5+,inf=1e9+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b,l,ne;
bool used;
}eg[maxn],eg2[maxn*];
int egh[maxn],ect;
int N,M,fa[maxn][],bf[maxn],bm[maxn],ma[maxn][],dep[maxn];
int ans[maxn]; inline int getf(int x){return bf[x]==x?x:bf[x]=getf(bf[x]);}
inline bool cmp(Edge a,Edge b){return a.l<b.l;}
inline void adeg(int a,int b,int c){
eg2[++ect].b=b;eg2[ect].ne=egh[a];
eg2[ect].l=c,egh[a]=ect;
} void dfs(int x){
// printf("!!%d %d %d\n",x,fa[x][0],ma[x][0]);
for(int i=;fa[x][i]&&fa[fa[x][i]];i++)
fa[x][i+]=fa[fa[x][i]][i],ma[x][i+]=max(ma[x][i],ma[fa[x][i]][i]);
for(int i=egh[x];i;i=eg2[i].ne){
int b=eg2[i].b;
if(b==fa[x][]) continue;
ma[b][]=eg2[i].l;
fa[b][]=x;dep[b]=dep[x]+;
dfs(b);
}
} int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
int re=;
for(int i=log2(dep[x]-dep[y]);i>=&&dep[x]!=dep[y];i--){
if(fa[x][i]&&dep[fa[x][i]]>=dep[y])
re=max(re,ma[x][i]),x=fa[x][i];
}
if(x==y) return re;
for(int i=log2(dep[x]);i>=;i--){
if(fa[x][i]!=fa[y][i])
re=max(re,max(ma[x][i],ma[y][i])),x=fa[x][i],y=fa[y][i];
}
return max(re,max(ma[x][],ma[y][]));
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=rd();
for(i=;i<=M;i++){
eg[i].a=rd(),eg[i].b=rd(),eg[i].l=rd();
eg[i].ne=i;
}
sort(eg+,eg+M+,cmp);
for(i=;i<=N;i++) bf[i]=i;
for(i=,j=;i<=M&&j<N-;i++){
int a=getf(eg[i].a),b=getf(eg[i].b);
if(a!=b){
bf[a]=b;
adeg(eg[i].a,eg[i].b,eg[i].l);
adeg(eg[i].b,eg[i].a,eg[i].l);
eg[i].l=inf;eg[i].used=;
j++;
}
}
dep[]=;dfs();
sort(eg+,eg+M+,cmp);
for(i=;i<=N;i++) bf[i]=i,bm[i]=inf;
for(i=;i<=M;i++){
if(eg[i].used) continue;
int a=getf(eg[i].a),b=getf(eg[i].b);
while(a!=b){
if(dep[a]<dep[b]) swap(a,b);
int bb=getf(fa[a][]);
bf[a]=bb,bm[a]=eg[i].l;
a=bb;
}
}
for(i=;i<=M;i++){
if(eg[i].used){
int a=eg[i].a,b=eg[i].b;
if(dep[a]<dep[b]) swap(a,b);
// a=getf(a),b=getf(b);
if(bm[a]<inf) ans[eg[i].ne]=bm[a]-;
else ans[eg[i].ne]=-;
}else{
ans[eg[i].ne]=lca(eg[i].a,eg[i].b)-;
}
}
for(i=;i<=M;i++)
printf("%d ",ans[i]);
return ;
}

cf827D Best Edge Weight (kruskal+倍增lca+并查集)的更多相关文章

  1. 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

    [题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...

  2. 【BZOJ-3910】火车 倍增LCA + 并查集

    3910: 火车 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 262  Solved: 90[Submit][Status][Discuss] De ...

  3. Codevs 3287 货车运输 2013年NOIP全国联赛提高组(带权LCA+并查集+最大生成树)

    3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description A 国有 n 座 ...

  4. BZOJ 4144 Dijkstra+Kruskal+倍增LCA

    思路: 先把所有的加油站 push进按weight排序的优先队列里 对于每个不是加油站的点 找到到它的点的最短路以及它来源的加油站 如果x和y有边 且x和y加油站的来源不一样 则它可以连边 跑一边Kr ...

  5. BZOJ 3732 Network Kruskal+倍增LCA

    题目大意:给定一个n个点m条边的无向连通图.k次询问两点之间全部路径中最长边的最小值 NOIP2013 货车运输.差点儿就是原题...仅仅只是最小边最大改成了最大边最小.. . 首先看到最大值最小第一 ...

  6. CF827D Best Edge Weight 题解

    题意: 给定一个点数为 n,边数为 m,权值不超过 \(10^9\) 的带权连通图,没有自环与重边. 现在要求对于每一条边求出,这条边的边权最大为多少时,它还能出现在所有可能的最小生成树上,如果对于任 ...

  7. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  8. [学习笔记]kruskal重构树 && 并查集重构树

    Kruskal 重构树 [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树 kruskal是一个性质优秀的算法 加入的边是越来越劣的 科学家们借这个特点尝试搞一点事 ...

  9. CF1253F Cheap Robot(神奇思路,图论,最短路,最小生成树/Kruskal 重构树/并查集)

    神仙题. 先考虑平方级别的暴力怎么做. 明显答案有单调性,先二分 \(c\). 先最短路预处理 \(dis_u\) 表示 \(u\) 到离它最近的充电站的距离(一开始把 \(1\) 到 \(k\) 全 ...

随机推荐

  1. Flutter - 创建自适应的Android app 图标

    上一篇文章说到  Flutter - 自动生成Android & iOS图标 通过flutter_launcher_icons 可以一键生成所有的Icon 到此基本什么问题也没有,如果你用io ...

  2. MySQL主主同步配置

    1. MySQL主主配置过程 在上一篇实现了主从同步的基础上,进行主主同步的配置. 这里用node19(主),node20(从)做修改,使得node19和node20变为主主同步配置模式 修改配置文件 ...

  3. checkpoint-BLCR部署和测试(源码)

    1. 概述2. 部署过程2.1 源码下载2.2 解压安装2.3 添加库环境2.4 插入内核模块3. 测试3.1 创建测试程序3.2 功能测试4. 参考博客 1. 概述 checkpoint 2. 部署 ...

  4. nginx的web缓存服务环境部署记录

    web缓存位于内容源Web服务器和客户端之间,当用户访问一个URL时,Web缓存服务器会去后端Web源服务器取回要输出的内容,然后,当下一个请求到来时,如果访问的是相同的URL,Web缓存服务器直接输 ...

  5. zabbix问题记录

    zabbix部署好,在使用一段时间后,出现了不少报错,在此简单做一记录.1)Zabbix监控界面报错Lack of free swap space on Zabbix server”解决公司线上部署的 ...

  6. 附加题(一)——interesting的抄袭现象

    这次的作业很有意思,是让我们搜索抄袭的同学的个人总结,并让我们列出链接,时间,作者及原因.其实我不是很能理解,抄袭现象是可耻的不受推崇的这是无可厚非,但是为什么要求我们大部分没有抄袭的同学去探究抄袭同 ...

  7. 补充照片:某基同学使用Bing词典

    某基同学使用Bing词典的照片

  8. Linux内核及分析 第四周 扒开系统调用的三层皮(上)

    实验过程 选择20号系统调用getpid(取得进程识别码) 在网上查询getpid函数的C语言代码以及其嵌入式汇编语句 C语言代码: #include <stdio.h> #include ...

  9. 20135337——Linux实践三:程序破解

    程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...

  10. 我的github地址

    链接:https://github.com/long0123/test.git   推送项目的github的大致步骤如下: 1.在本地创建一个项目仓库,可以放些基本的项目文件 2.cd至该目录下 3. ...