先用kruskal处理出一个最小生成树

对于非树边,倍增找出两端点间的最大边权-1就是答案

对于树边,如果它能被替代,就要有一条非树边,两端点在树上的路径覆盖了这条树边,而且边权不大于这条树边

这里可以树剖来做,但是不想用..

如果先把非树边从小到大排序然后去覆盖树边,那么一条树边只需要被覆盖一次

所以可以用一个并查集来把父子边被覆盖的点合到一起,在合并之前记下来这次覆盖的边权,下次再覆盖的时候直接跳过去就可以

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=2e5+,inf=1e9+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b,l,ne;
bool used;
}eg[maxn],eg2[maxn*];
int egh[maxn],ect;
int N,M,fa[maxn][],bf[maxn],bm[maxn],ma[maxn][],dep[maxn];
int ans[maxn]; inline int getf(int x){return bf[x]==x?x:bf[x]=getf(bf[x]);}
inline bool cmp(Edge a,Edge b){return a.l<b.l;}
inline void adeg(int a,int b,int c){
eg2[++ect].b=b;eg2[ect].ne=egh[a];
eg2[ect].l=c,egh[a]=ect;
} void dfs(int x){
// printf("!!%d %d %d\n",x,fa[x][0],ma[x][0]);
for(int i=;fa[x][i]&&fa[fa[x][i]];i++)
fa[x][i+]=fa[fa[x][i]][i],ma[x][i+]=max(ma[x][i],ma[fa[x][i]][i]);
for(int i=egh[x];i;i=eg2[i].ne){
int b=eg2[i].b;
if(b==fa[x][]) continue;
ma[b][]=eg2[i].l;
fa[b][]=x;dep[b]=dep[x]+;
dfs(b);
}
} int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
int re=;
for(int i=log2(dep[x]-dep[y]);i>=&&dep[x]!=dep[y];i--){
if(fa[x][i]&&dep[fa[x][i]]>=dep[y])
re=max(re,ma[x][i]),x=fa[x][i];
}
if(x==y) return re;
for(int i=log2(dep[x]);i>=;i--){
if(fa[x][i]!=fa[y][i])
re=max(re,max(ma[x][i],ma[y][i])),x=fa[x][i],y=fa[y][i];
}
return max(re,max(ma[x][],ma[y][]));
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=rd();
for(i=;i<=M;i++){
eg[i].a=rd(),eg[i].b=rd(),eg[i].l=rd();
eg[i].ne=i;
}
sort(eg+,eg+M+,cmp);
for(i=;i<=N;i++) bf[i]=i;
for(i=,j=;i<=M&&j<N-;i++){
int a=getf(eg[i].a),b=getf(eg[i].b);
if(a!=b){
bf[a]=b;
adeg(eg[i].a,eg[i].b,eg[i].l);
adeg(eg[i].b,eg[i].a,eg[i].l);
eg[i].l=inf;eg[i].used=;
j++;
}
}
dep[]=;dfs();
sort(eg+,eg+M+,cmp);
for(i=;i<=N;i++) bf[i]=i,bm[i]=inf;
for(i=;i<=M;i++){
if(eg[i].used) continue;
int a=getf(eg[i].a),b=getf(eg[i].b);
while(a!=b){
if(dep[a]<dep[b]) swap(a,b);
int bb=getf(fa[a][]);
bf[a]=bb,bm[a]=eg[i].l;
a=bb;
}
}
for(i=;i<=M;i++){
if(eg[i].used){
int a=eg[i].a,b=eg[i].b;
if(dep[a]<dep[b]) swap(a,b);
// a=getf(a),b=getf(b);
if(bm[a]<inf) ans[eg[i].ne]=bm[a]-;
else ans[eg[i].ne]=-;
}else{
ans[eg[i].ne]=lca(eg[i].a,eg[i].b)-;
}
}
for(i=;i<=M;i++)
printf("%d ",ans[i]);
return ;
}

cf827D Best Edge Weight (kruskal+倍增lca+并查集)的更多相关文章

  1. 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

    [题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...

  2. 【BZOJ-3910】火车 倍增LCA + 并查集

    3910: 火车 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 262  Solved: 90[Submit][Status][Discuss] De ...

  3. Codevs 3287 货车运输 2013年NOIP全国联赛提高组(带权LCA+并查集+最大生成树)

    3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description A 国有 n 座 ...

  4. BZOJ 4144 Dijkstra+Kruskal+倍增LCA

    思路: 先把所有的加油站 push进按weight排序的优先队列里 对于每个不是加油站的点 找到到它的点的最短路以及它来源的加油站 如果x和y有边 且x和y加油站的来源不一样 则它可以连边 跑一边Kr ...

  5. BZOJ 3732 Network Kruskal+倍增LCA

    题目大意:给定一个n个点m条边的无向连通图.k次询问两点之间全部路径中最长边的最小值 NOIP2013 货车运输.差点儿就是原题...仅仅只是最小边最大改成了最大边最小.. . 首先看到最大值最小第一 ...

  6. CF827D Best Edge Weight 题解

    题意: 给定一个点数为 n,边数为 m,权值不超过 \(10^9\) 的带权连通图,没有自环与重边. 现在要求对于每一条边求出,这条边的边权最大为多少时,它还能出现在所有可能的最小生成树上,如果对于任 ...

  7. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  8. [学习笔记]kruskal重构树 && 并查集重构树

    Kruskal 重构树 [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树 kruskal是一个性质优秀的算法 加入的边是越来越劣的 科学家们借这个特点尝试搞一点事 ...

  9. CF1253F Cheap Robot(神奇思路,图论,最短路,最小生成树/Kruskal 重构树/并查集)

    神仙题. 先考虑平方级别的暴力怎么做. 明显答案有单调性,先二分 \(c\). 先最短路预处理 \(dis_u\) 表示 \(u\) 到离它最近的充电站的距离(一开始把 \(1\) 到 \(k\) 全 ...

随机推荐

  1. [Oracle][PDB]PDB restore/recover 过程记录

    友人给的PDB restore / recover 的过程. 实际上会创建一个辅助Instance,然后抽取出PDB,进行恢复. (10:31:59) frank.yan: [Administrato ...

  2. 【变态需求】bootstrapTable列排序-选择正序倒序不排序

    产品经理:那个table排序能不能点击后弹个选项选择正序倒序不排序? -- 那个是bootstrapTable的插件!不支持!改不了!! 注意:数据上假的,效果看http请求参数进行脑补 这是boot ...

  3. Sql_索引分析

    「索引就像书的目录, 通过书的目录就准确的定位到了书籍具体的内容」,这句话描述的非常正确, 但就像脱了裤子放屁,说了跟没说一样,通过目录查找书的内容自然是要比一页一页的翻书找来的快,同样使用的索引的人 ...

  4. Docker网络解决方案 - Calico部署记录

    简单来说,实现docker跨主机容器间通信,常用的第三方网络方案是Flannel,Weave,Calico:Flannel会为每个host分配一个subnet,容器从这个subnet中分配ip,这些i ...

  5. margin不生效问题

    问题机型 魅族M353 Android 5.0.1 问题描述 设置了margin-top: 15px; 但是在该机型上不生效 解决方案 使用padding 替代 margin

  6. [ERROR] Fatal error: Please read "Security" section of the manual to find out how to run mysqld as root!

    测试mysqld启动mysql server的时候,报如下错误: 2015-12-17 00:46:02 10785 [ERROR] Fatal error: Please read "Se ...

  7. D. Little C Loves 3 II

    传送门 [http://codeforces.com/contest/1047/problem/D] 题意 给你n*m得棋盘,让你找两点之间距离为3的点的个数,不能重复使用,距离定义,两坐标差绝对值之 ...

  8. 研究C语言的新型编译环境TCC

    C语言综合研究1 搭建一个tcc环境 研究过程: 问题引出:为什么要使用tcc环境,甚至连图形界面都没有,为什么要使用这样的化境? 按照我们学习的本质来讲,可能是为了体验C语言底层的相关特性,但是在研 ...

  9. Pair Project —— Elevator Scheduler

    结对编程人员 12061153 刘丽萍 12061154 冯飘飘 说明结对编程的优点和缺点. 结对编程的优点: 以前都是自己一个人编程,对于相互结对或者团队编程都没有接触过.而自己在写代码时不可避免的 ...

  10. Sonatype Nexus 2.11.1-01 使用入门

    nexus安装与启动 linux下: 安装路径 /home/maven/nexus-2.11.1-01/ 启动方法 ./bin/nexus start windows下: 管理员模式运行cmd.exe ...