题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212

思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换.

实现代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 4e5+;
int n,cnt,idx;
ll ans,cnt1,cnt2;
int v[M],l[M],r[M],root[M];
int sum[M*],ls[M*],rs[M*];
void init_tree(int x){
scanf("%d",&v[x]);
if(!v[x]){
l[x] = ++cnt;
init_tree(l[x]);
r[x] = ++cnt;
init_tree(r[x]);
}
} void pushup(int rt){
sum[rt] = sum[ls[rt]] + sum[rs[rt]];
} void build(int p,int l,int r,int &rt){
if(!rt) rt = ++idx;
if(l == r){
sum[rt] = ;
return ;
}
int mid = (l + r) >> ;
if(p <= mid) build(p,l,mid,ls[rt]);
else build(p,mid+,r,rs[rt]);
pushup(rt);
} int merge(int x,int y){
if(!x) return y;
if(!y) return x;
cnt1 += (ll)sum[rs[x]]*sum[ls[y]];
cnt2 += (ll)sum[ls[x]]*sum[rs[y]];
ls[x] = merge(ls[x],ls[y]);
rs[x] = merge(rs[x],rs[y]);
pushup(x);
return x;
} void solve(int x){
if(!x) return ;
solve(l[x]); solve(r[x]);
if(!v[x]){
cnt1 = cnt2 = ;
root[x] = merge(root[l[x]],root[r[x]]);
ans += min(cnt1,cnt2);
}
} int main()
{
scanf("%d",&n);
cnt = ;
init_tree();
for(int i = ;i <= cnt;i ++){
if(v[i])
build(v[i],,n,root[i]);
}
solve();
printf("%lld\n",ans);
return ;
}

bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)的更多相关文章

  1. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  2. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  3. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  6. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  7. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  9. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

随机推荐

  1. python 日志

    logger.conf 配置文件 #logger.conf ############################################### [loggers] keys=root,ex ...

  2. ASP.NET MVC学习笔记(二)笔记

    接下来我们一起了解ASP.NET MVC的最重要的核心技术,了解ASP.NET MVC的开发框架,生命周期,技术细节. 一.Routing与ASP.NET MVC生命周期 1.Routing——网址路 ...

  3. XML转换为对象/Javabean

    將XML轉換為對象 /** * xml转换成JavaBean * @param xml * @param c * @return */ public static <T> T conver ...

  4. 简单的策略模式Strategy演示

    策略模式,即规则在变化之中,结果终归为一. 公司给员工计算工资,如有加班费,差旅费,每个月的生活补帖等等其它费用需要计算.这个费的规则是不尽相同. 不管策略的规则怎样,终归需要计算出一个结果 工资: ...

  5. odoo订餐系统之订单设计

    订餐系统的主要功能便是用户下单部分,这里我们分为表头mylunch_order和表体mylunch_order_line两张主要的数据表,表头主要记录订单的一些通用信息,比如下单的操作人员 下单日期 ...

  6. 【php增删改查实例】第十三节 - EasyUI列格式化

    因为easyUI的datagrid组件是横着一格一格加载数据的,一行加载好了之后才会去加载下一行.所谓的列格式化,就是在加载某一列的所有单元格时,对即将加载到这些单元格的数据进行二次包装. 比如,我们 ...

  7. Elasticsearch Query DSL 整理总结(四)—— Multi Match Query

    目录 引言 概要 fields 字段 通配符 提升字段权重 multi_match查询的类型 best_fields 类型 dis_max 分离最大化查询 best_fields 维权使者 tie_b ...

  8. 如何在java项目中使用lucene

    lucene是一个开源的全文检索引擎工具包,但它不是一个成型的搜索引擎,它的功能就是负责将文本数据按照某种分词算法进行分词,分词后的结果存储在索引库中,然后根据关键字从索引库检检索. 那么应该如何使用 ...

  9. Linux内核分析——第三章 进程管理

    第三章 进程管理 3.1 进程 1.进程就是处于执行期的程序:进程就是正在执行的程序代码的实时结果:进程是处于执行期的程序以及相关的资源的总称:进程包括代码段和其他资源. 线程:是在进程中活动的对象. ...

  10. 如何将数据库引擎配置为侦听多个 TCP 端口

    SQL Server 2005         为 SQL Server 启用 TCP/IP 后,数据库引擎将侦听连接点上是否有传入的连接(由 IP 地址和 TCP 端口号组成).下列步骤将创建一个表 ...