题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大。

根据最短路的 dp 思想,可以先对原图进行一次 dij ,求出从源点出发,到下标为 X 的点的路径中,最小的点权;再对反图进行一次 dij ,求出从汇点出发,到下标为 X 的点的路径中,最大的点权。

之后遍历每个点,两值值差的最大值即为答案。其中,遍历每一个点既保证了两点的有序性,又保证了两个点的连通性。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxv=1e5+10;
const int maxe=5e5+10; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} vector<int> G[maxv],_G[maxv];
inline void add_edge(int from,int to){
G[from].push_back(to),_G[to].push_back(from);
} int val[maxv],n,m,d_min[maxv],d_max[maxv];
bool vis[maxv]; void read_and_parse(){
n=read(),m=read();
for(int i=1;i<=n;i++)val[i]=read();
for(int i=1,x,y,z;i<=m;i++){
x=read(),y=read(),z=read();
add_edge(x,y);
if(z==2)add_edge(y,x);
}
}
typedef pair<int,int> P; void dij1(){
memset(vis,0,sizeof(vis));
memset(d_min,0x3f,sizeof(d_min));
priority_queue<P> q;
d_min[1]=val[1],q.push(make_pair(-val[1],1));
while(q.size()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(d_min[v]>min(d_min[u],val[v])){
d_min[v]=min(d_min[u],val[v]);
q.push(make_pair(-d_min[v],v));
}
}
}
} void dij2(){
memset(vis,0,sizeof(vis));
priority_queue<P> q;
d_max[n]=val[n],q.push(make_pair(val[n],n));
while(q.size()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=0;i<_G[u].size();i++){
int v=_G[u][i];
if(d_max[v]<max(d_max[u],val[v])){
d_max[v]=max(d_max[u],val[v]);
q.push(make_pair(d_max[v],v));
}
}
}
} void solve(){
dij1();dij2();
int ans=0;
for(int i=1;i<=n;i++)
ans=max(ans,d_max[i]-d_min[i]);
printf("%d\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P1073】最优贸易的更多相关文章

  1. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  2. 洛谷P1073 最优贸易==codevs1173 最优贸易

    P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...

  3. 洛谷——P1073 最优贸易

    P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...

  4. 洛谷 P1073 最优贸易 最短路+SPFA算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...

  5. 洛谷P1073 最优贸易 [图论,DP]

    题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  6. 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)

    传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...

  7. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  8. 洛谷 P1073 最优贸易

    题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...

  9. NOIP2009 codevs1173 洛谷P1073 最优贸易

    Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...

  10. 洛谷P1073最优贸易——双向取值

    题目:https://www.luogu.org/problemnew/show/P1073 由于任何城市都可以多次经过,所以可以随便走,也就不用太在意有向边和无向边,把无向边当做两条有向边处理: 根 ...

随机推荐

  1. ExtJs 编译

    前台使用Extjs加载源码的话是非常庞大的,编译之后就只加载一个app.js文件.这种技能如果不知道的话怕别人骂我不是个女程序员.哈哈哈哈哈. 打开cmd,进入程序Extjs的文件夹,如我的程序Ext ...

  2. linux下监控某个目录是否被更改

    需求:对一个目录(比如/data/test)进行监控,当这个目录下文件或子目录出现变动(如修改.创建.删除.更名等操作)时,就发送邮件!针对上面的需求,编写shell脚本如下: [root@cento ...

  3. linux系统最小化安装后的初始化脚本

    作为运维人员,经常会初始化系统,系统在安装过程中基本都会选择最小化安装,这样安装好的系统里会缺少很多环境. 下面分享一个系统安装后的初始化脚本: #!/bin/bash #系统时最小化安装的,这里要安 ...

  4. 添加php的memcached扩展模块

    memcached服务直接用yum安装[root@localhost ~]# yum install memcached 然后启动memcache服务,启动多个实例[root@localhost ~] ...

  5. php 中 opendir() readdir() scandir()

    opendir(path,context)若成功,则该函数返回一个目录流,否则返回 false 以及一个 error.可以通过在函数名前加上 “@” 来隐藏 error 的输出. readdir() ...

  6. Python-复习-文件操作-21

    # 文件处理 # 打开文件 #open('路径','打开方式','指定编码方式') # 打开方式 r w a r+ w+ a+ b #r+ 打开文件直接写 和读完再写 # 编码方式 —— utf-8 ...

  7. Linux基础实践

    Linux基础实践 1.1 应用安装 要求:掌握软件源的维护方法,配置系统使用软件源镜像.掌握通过软件源来查找,安装,卸载,更新软件的方法 备份原地址列表文件:sudo cp /etc/apt/sou ...

  8. Linux内核第二节

    作者:武西垚 深入理解函数调用堆栈 堆栈是C语言程序运行时必须的一个记录调用路径和参数的空间 堆栈的作用 函数调用框架 传递参数 保存返回地址 提供局部变量空间 堆栈相关的寄存器 esp,堆栈指针,指 ...

  9. 实验1--用C语言编程四则运算

    #include<stdio.h>#include<stdlib.h>#include <time.h>#define N 30main(){int a,b,k,i ...

  10. 正则表达式(java)

    概念: 正则表达式,又称规则表达式.(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念. 正则表通常被用来检索.替换那些符合某个模式( ...