【洛谷P1073】最优贸易
题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大。
根据最短路的 dp 思想,可以先对原图进行一次 dij ,求出从源点出发,到下标为 X 的点的路径中,最小的点权;再对反图进行一次 dij ,求出从汇点出发,到下标为 X 的点的路径中,最大的点权。
之后遍历每个点,两值值差的最大值即为答案。其中,遍历每一个点既保证了两点的有序性,又保证了两个点的连通性。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxv=1e5+10;
const int maxe=5e5+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
vector<int> G[maxv],_G[maxv];
inline void add_edge(int from,int to){
G[from].push_back(to),_G[to].push_back(from);
}
int val[maxv],n,m,d_min[maxv],d_max[maxv];
bool vis[maxv];
void read_and_parse(){
n=read(),m=read();
for(int i=1;i<=n;i++)val[i]=read();
for(int i=1,x,y,z;i<=m;i++){
x=read(),y=read(),z=read();
add_edge(x,y);
if(z==2)add_edge(y,x);
}
}
typedef pair<int,int> P;
void dij1(){
memset(vis,0,sizeof(vis));
memset(d_min,0x3f,sizeof(d_min));
priority_queue<P> q;
d_min[1]=val[1],q.push(make_pair(-val[1],1));
while(q.size()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(d_min[v]>min(d_min[u],val[v])){
d_min[v]=min(d_min[u],val[v]);
q.push(make_pair(-d_min[v],v));
}
}
}
}
void dij2(){
memset(vis,0,sizeof(vis));
priority_queue<P> q;
d_max[n]=val[n],q.push(make_pair(val[n],n));
while(q.size()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=0;i<_G[u].size();i++){
int v=_G[u][i];
if(d_max[v]<max(d_max[u],val[v])){
d_max[v]=max(d_max[u],val[v]);
q.push(make_pair(d_max[v],v));
}
}
}
}
void solve(){
dij1();dij2();
int ans=0;
for(int i=1;i<=n;i++)
ans=max(ans,d_max[i]-d_min[i]);
printf("%d\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P1073】最优贸易的更多相关文章
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
- 洛谷——P1073 最优贸易
P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...
- 洛谷 P1073 最优贸易 最短路+SPFA算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...
- 洛谷P1073 最优贸易 [图论,DP]
题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...
- 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)
传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...
- [NOIP2009] 提高组 洛谷P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
- 洛谷 P1073 最优贸易
题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...
- NOIP2009 codevs1173 洛谷P1073 最优贸易
Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...
- 洛谷P1073最优贸易——双向取值
题目:https://www.luogu.org/problemnew/show/P1073 由于任何城市都可以多次经过,所以可以随便走,也就不用太在意有向边和无向边,把无向边当做两条有向边处理: 根 ...
随机推荐
- [UWP 自定义控件]了解模板化控件(1):基础知识
1.概述 UWP允许开发者通过两种方式创建自定义的控件:UserControl和TemplatedControl(模板化控件).这个主题主要讲述如何创建和理解模板化控件,目标是能理解模板化控件常见的知 ...
- Android恶意样本数据集汇总
硕士论文的研究方向为Android恶意应用分类,因此花了一点时间去搜集Android恶意样本.其中一部分来自过去论文的公开数据集,一部分来自社区或平台的样本.现做一个汇总,标明了样本或数据集的采集时间 ...
- Docker环境编译时的错误记录
1)报错一docker-compose -f compose/app.yaml -f compose/backend.yaml -f compose/proxy.yaml build peatio b ...
- 个人对vuex的表象理解(笔记)
一个东西,首先要知道为什么用它,为什么要vuex,官方解释为了解决繁杂事件订阅和广播,那么事件的$dispatch,$on,怎么就复杂了?许多人是不是感觉后者还挺简单的,对的 如果简单小型项目,那么不 ...
- 对我们最常用的软件QQ的看法
QQ聊天软件是我使用的第一款聊天软件,早在我上小学6年级的时候就开始接触这款软件了,可以说是陪伴我最久的一款软件. 相对于其他的聊天软件,QQ更加的方便,使用简单,界面也好操作,所以我爱上了这款软件. ...
- BugPhobia团队篇章:团队管理与Github源代码管理说明
0x00:序言 To the searching tags, you may well fall in love withhttp://xueba.nlsde.buaa.edu.cn/ 再见,无忧时光 ...
- Hibernate_HQL
public class According_condition { public static void main(String[]args){ Session session=HibernateU ...
- react 动态获取数据
如果reander()里面的dom元素是动态获取的,就要将函数放到setSTATE()里面执行
- 百度地图marker点击任意一个当前的变化,其余的marker不变
百度地图marker点击任意一个当前的变化,其余的marker不变 最近做的百度地图,遇到一个问题,就是在for循环里面执行marker的点击事件 没有可以比对的对象,每次点击marker的时候,i都 ...
- shell脚本--循环结构
shell的循环结构有while和for两种 for循环 #!/bin/bash #文件名:test.sh i=4 for i in 2 4 6 8 10 do echo $i done echo $ ...