Description:

给定一个序列\(a_1,a_2,a_3...a_n\)

求有多少个不上升子序列:

\(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}}*C_{a_{b2}}^{a_{b3}}*.....mod\ 2 >0\)

输出对\(10^9+7\)取模的结果

Hint:

$ 1 ≤ n ≤ 211985, 1 ≤ ai ≤ 233333​\(。所有的\) a_i ​$互不相同

Solution:

由\(Lucas\)定理:

$ C_nm=C_{n/2}{m/2} \ast C_{n \text{%} 2}^{m \text{%} 2}\ \text{ % } \ 2 $

可见 \(C_{n}^m mod\ 2 \not = 0\) 的充要条件是\(n,m\)转为\(2\)进制后\(m\)中包含1的位置是\(n\)的子集

为什么?

好好思考一下\(Lucas\)的过程,不就可以看成位运算吗?

一旦有\(m>n\),则整个式子值为\(0\)

故子序列中一个数的后一位\(a_j\)必须满足 $ a_{i} \text{&} a_{j} = a_{j} $

枚举二进制位1的子集,直接\(dp\)就行

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e6+5,mod=1e9+7;
int n,ans,a[mxn],f[mxn],rk[mxn]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} int main()
{
n=read();
for(int i=1;i<=n;++i) a[i]=read(),rk[a[i]]=i,f[a[i]]=1;
for(int i=1;i<=n;++i)
for(int j=(a[i]-1)&a[i];j;j=(j-1)&a[i])
if(rk[j]>i) f[j]=(f[j]+f[a[i]])%mod;
for(int i=1;i<=n;++i) ans=(ans+f[a[i]])%mod;
printf("%d\n",(ans-n+mod)%mod);
return 0;
}

g

[CTSC2017]吉夫特的更多相关文章

  1. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  2. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  3. uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划

    题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...

  4. bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特

    http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...

  5. [UOJ300][CTSC2017]吉夫特

    uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...

  6. BZOJ4903: [Ctsc2017]吉夫特

    传送门 可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\) 即 \(m\) 二进制下为 \(n\) 的子集 那么可以直接写一个 \(3^ ...

  7. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  8. [CTSC2017]吉夫特(Lucas定理,DP)

    送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...

  9. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

随机推荐

  1. AI学习吧-REDIS-常识

    Redis 是一个non-sql,非关系型数据库,数据存放在内存中,支持持久化,redis中的数据会在一段时间内和(mysql等数据库)磁盘进行同步,防止丢失,这样也就降低了读数据效率. Redis和 ...

  2. Docker相关释义

    Docker相关释义 基础网站:http://www.runoob.com/docker/docker-tutorial.html Docker的思想来自于集装箱,集装箱解决了什么问题?在一艘大船上, ...

  3. 牛客寒假算法基础集训营4 I题 Applese 的回文串

    链接:https://ac.nowcoder.com/acm/contest/330/I 来源:牛客网 自从 Applese 学会了字符串之后,精通各种字符串算法,比如--判断一个字符串是不是回文串. ...

  4. javac选项以递归方式编译给定目录下的所有Java文件 - IT屋-程序员软件开发技术分享社区

    http://www.it1352.com/539276.html #Linux $ find -name“* .java”> sources.txt $ javac @ sources.txt ...

  5. C#递归拷贝文件删除文件

    拷贝文件及子文件,最后一个参数排除,哪个不要删除.(其实就是移动的效果) //拷贝文件及子文件 public static void CopyDirectory(string src, string ...

  6. MyBatis - 2.全局文件配置

    1.properties 属性 <!--properties 引入外部配置文件 properties 的内容 resource: 引入类路径资源 url: 引入网络资源 --> <p ...

  7. DevExpress中的GridControl控件设置了列Readonly后,想双击弹出明细的实现

    OptionsBehavior.Editable = true时,会有二个对象触发事件:view触发ShownEditor 事件(第一单击时)和内置编辑器的DoubleClick事件所以必须处理这二个 ...

  8. python--自己实现的单链表常用功能

    最近一个月,就耗在这上面吧. 很有收获的. # coding = utf-8 # 单向链表 class Node: def __init__(self, new_data): self.data = ...

  9. 实现虚拟机VMware上Centos操作系统与主机windows之间互相复制与粘贴

    1.启动你的虚拟机,然后点击虚拟机,如下所示(未安装的话,显示的是安装VMware Tools): 2.点击安装Vmware tools以后显示如下所示: 3.VMwareTools-9.9.2-24 ...

  10. Centos7安装OpenJDK8

    https://blog.csdn.net/kanbe_kotori/article/details/70948430