BZOJ4516 SDOI2016生成魔咒(后缀数组+平衡树)
一个字符串本质不同的子串数量显然是总子串数减去所有height值。如果一个个往里加字符的话,每次都会改动所有后缀完全没法做。但发现如果从后往前加的话,每次只会添加一个后缀。于是我们把字符串倒过来,每次往里添加后缀并维护答案。可以用一棵平衡树,每次插入时查询这个名次的前驱后继以更新。
SA板子敲得磕磕绊绊,没什么救了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
int n,a[N],b[N],cnt[N],sa[N],sa2[N],tmp[N<<],rk[N<<];
int h[N],s[N],f[N][],lg2[N];
set<int> tree;
int query(int x,int y)
{
if (x>y) swap(x,y);
y--;
return min(f[x][lg2[y-x+]],f[y-(<<lg2[y-x+])+][lg2[y-x+]]);
}
void make(int m)
{
memset(cnt,,sizeof(cnt));
for (int i=;i<=n;i++) cnt[rk[i]=a[i]]++;
for (int i=;i<=m;i++) cnt[i]+=cnt[i-];
for (int i=n;i>=;i--) sa[cnt[rk[i]]--]=i;
for (int k=;k<=n;k<<=)
{
int p=;
for (int i=n-k+;i<=n;i++) sa2[++p]=i;
for (int i=;i<=n;i++) if (sa[i]>k) sa2[++p]=sa[i]-k;
memset(cnt,,sizeof(cnt));
for (int i=;i<=n;i++) cnt[rk[i]]++;
for (int i=;i<=m;i++) cnt[i]+=cnt[i-];
for (int i=n;i>=;i--) sa[cnt[rk[sa2[i]]]--]=sa2[i];
memcpy(tmp,rk,sizeof(rk));
p=;rk[sa[]]=;
for (int i=;i<=n;i++)
{
if (tmp[sa[i]]!=tmp[sa[i-]]||tmp[sa[i]+k]!=tmp[sa[i-]+k]) p++;
rk[sa[i]]=p;
}
if (p>=n) break;
m=p;
}
for (int i=;i<=n;i++)
{
h[i]=max(h[i-]-,);
while (a[i+h[i]]==a[sa[rk[i]-]+h[i]]) h[i]++;
}
for (int i=;i<n;i++) f[i][]=h[sa[i+]];
for (int j=;j<;j++)
for (int i=;i<n;i++)
f[i][j]=min(f[i][j-],f[min(n-,i+(<<j-))][j-]);
lg2[]=;
for (int i=;i<n;i++)
{
lg2[i]=lg2[i-];
if ((<<lg2[i])<=i) lg2[i]++;
}
}
int main()
{
freopen("bzoj4516.in","r",stdin);
freopen("bzoj4516.out","w",stdout);
n=read();
for (int i=;i<=n;i++) b[i]=a[i]=read();
sort(b+,b+n+);
int t=unique(b+,b+n+)-b;
for (int i=;i<=n;i++) a[i]=lower_bound(b+,b+t,a[i])-b;
reverse(a+,a+n+);
make(t);
tree.clear();tree.insert(rk[n]);
long long ans=;cout<<ans<<endl;
for (int i=n-;i>=;i--)
{
set<int>::iterator it=tree.lower_bound(rk[i]);
ans+=n-i+;
if (it==tree.begin()) ans-=query(rk[i],*it);
else if (it==tree.end()) ans-=query(rk[i],*(--it));
else
{
int x=*it,y=*(--it);
ans+=query(x,y);
ans-=query(x,rk[i]),ans-=query(y,rk[i]);
}
tree.insert(rk[i]);
printf("%lld\n",ans);
}
fclose(stdin);fclose(stdout);
return ;
}
BZOJ4516 SDOI2016生成魔咒(后缀数组+平衡树)的更多相关文章
- [SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流
[SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次 ...
- BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)
题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...
- BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机
#include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...
- 【bzoj4516】[Sdoi2016]生成魔咒 后缀数组+倍增RMQ+STL-set
题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2 ...
- [bzoj4516][Sdoi2016]生成魔咒——后缀自动机
Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...
- BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...
- BZOJ.4516.[SDOI2016]生成魔咒(后缀数组 RMQ)
题目链接 后缀自动机做法见这(超好写啊). 后缀数组是可以做的: 本质不同的字符串的个数为 \(子串个数-\sum_{ht[i]}\),即 \(\frac{n(n+1)}{2}-\sum_{ht[i] ...
- BZOJ 4516: [Sdoi2016]生成魔咒(后缀数组)
传送门 解题思路 题目其实就是动态维护本质不同的串的个数.考虑到只有加数字的操作,所以可以用后缀数组.题目是每次往后加数字,这样不好处理,因为每次加数字之后所有的后缀都会改变.所以要转化一下思路,就是 ...
- BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]
4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...
- liberOJ #2033. 「SDOI2016」生成魔咒 后缀数组
#2033. 「SDOI2016」生成魔咒 题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1 11.2 22 拼凑起来形成一个魔咒串 [1,2] [1, 2] ...
随机推荐
- mqtt 客户端 基于Python
这几天一直在搞安全通信,微信小程序,反向代理等等,为了能让自己对整个系统做到把控,主要是需要了解每一个细节的地方,所以今天花了3个小时的时间学习了Python,因为我要用它来做Http和WebSock ...
- 05-Mirrorgate数据库信息
1.登录数据库 [root@node1 ~]# mongo localhost: > show dbs; admin .000GB dashboarddb .001GB local .000GB ...
- 4.5《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)—第四章小结
本章相关重要命令总结在Table 6. 命令 描述 示例 mkdir <name> 创建某目录 $ mkdir foo pwd 显示当前所在目录 $ pwd cd <dir> ...
- 牛客多校第三场-A-PACM Team-多维背包的01变种
题目我就不贴了...说不定被查到要GG... 题意就是我们需要在P,A,C,M四个属性的限制下,找到符合条件的最优解... 这样我们就需要按照0/1背包的思路,建立一个五维度数组dp[i][j][k] ...
- UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现(转)
UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现 类与类图 1) 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性.操作.关系的对象集合的总称. 2) 在系统 ...
- Github学习心得体会
https://github.com/Accredit/TEST 在本学期第一次接触Github,在系统的学习了Github的使用之后,自己对Github有了一个基本的使用了解.在这个过程中,自己也认 ...
- SpringMVC视图解析器概述
不论控制器返回一个String,ModelAndView,View都会转换为ModelAndView对象,由视图解析器解析视图,然后,进行页面的跳转. 控制器处理方法---->ModelAndV ...
- (Alpha)Let's-版本发布说明
我们的Let’s APP发布了! (下载地址在“下载与安装”部分) Alpha版本功能 Alpha版本是我们发布的第一个版本,所以仅实现了活动实体和用户实体之间的基础联系功能. 基本功能 登录和注册 ...
- 业务-----修改Service常用逻辑
注意:修改时唯一属性不能重复 //num==null 时,没有修改Num,不用考虑重复问题.//num!=null 时,修改了num.考虑重复问题 if(!StringUtils.isEmpty(re ...
- node的经典事件监听
let fs = require('fs'); let Event = require('events'); let myEvent = new Event(); //注册一个订阅者 A myEven ...