一、题目

Description

Given a number of distinct decimal digits, you can form one integer by choosing a non-empty subset of these digits and writing them in some order. The remaining digits can be written down in some order to form a second integer. Unless the resulting integer is 0, the integer may not start with the digit 0.

Given a number of distinct decimal digits, you can form one integer by choosing a non-empty subset of these digits and writing them in some order. The remaining digits can be written down in some order to form a second integer. Unless the resulting integer is 0, the integer may not start with the digit 0. 

For example, if you are given the digits 0, 1, 2, 4, 6 and 7, you can write the pair of integers 10 and 2467. Of course, there are many ways to form such pairs of integers: 210 and 764, 204 and 176, etc. The absolute value of the difference between the integers in the last pair is 28, and it turns out that no other pair formed by the rules above can achieve a smaller difference.

Input

The first line of input contains the number of cases to follow. For each case, there is one line of input containing at least two but no more than 10 decimal digits. (The decimal digits are 0, 1, ..., 9.) No digit appears more than once in one line of the input. The digits will appear in increasing order, separated by exactly one blank space.

Output

For each test case, write on a single line the smallest absolute difference of two integers that can be written from the given digits as described by the rules above.

Sample Input

1
0 1 2 4 6 7

Sample Output

28

二、思路&心得

  • 贪心:根据题目特点,选择不同情况下的最优解
  • 枚举:枚举多种局部最优解,然后求出符合题意的最值

三、代码


#include<cstdio>
#include<algorithm>
#define MAX 99999
using namespace std; int nums[11];
char ch; int solve() {
int len = 0;
while (1) {
scanf("%d%c", &nums[len ++], &ch);
if (ch == '\n') break;
}
if (len == 2) {
return abs(nums[0] - nums[1]);
}
int x = 0, y = 0;
int mid;
if (len % 2 != 0) {
mid = len / 2;
if (!nums[0]) swap(nums[0], nums[1]);
for (int i = 0; i < mid + 1; i ++) {
x = x * 10 + nums[i];
}
for (int i = len - 1; i > mid; i --) {
y = y * 10 + nums[i];
}
return x - y;
} else {
int index, cnt = 0, ans = MAX;
int min_XY = 11;
for (int i = 1; i < len; i ++) {
if (min_XY >= nums[i] - nums[i - 1] && nums[i] && nums[i - 1]) {
min_XY = nums[i] - nums[i - 1];
x = nums[i], y = nums[i - 1];
for (cnt = 0, index = 0; index < len, cnt < (len - 2) / 2; index ++) {
if (index != i && index != i - 1) {
x = x * 10 + nums[index];
cnt ++;
}
}
mid = index;
for (cnt = 0, index = len - 1; index >= mid, cnt < (len - 2) / 2; index --) {
if (index != i && index != i - 1) {
y = y * 10 + nums[index];
cnt ++;
}
}
if (ans > (x - y)) ans = x - y;
}
}
return ans;
}
} int main() {
int t;
scanf("%d", &t);
while (t --) {
printf("%d\n", solve());
}
return 0;
}

【搜索】POJ-2718 贪心+枚举的更多相关文章

  1. POJ 1018 Communication System 贪心+枚举

    看题传送门:http://poj.org/problem?id=1018 题目大意: 某公司要建立一套通信系统,该通信系统需要n种设备,而每种设备分别可以有m个厂家提供生产,而每个厂家生产的同种设备都 ...

  2. POJ 2718【permutation】

    POJ 2718 问题描述: 给一串数,求划分后一个子集以某种排列构成一个数,余下数以某种排列构成另一个数,求这两个数最小的差,注意0开头的处理. 超时问题:一开始是得到一个数列的组合之后再从中间进行 ...

  3. POJ 2718 Smallest Difference(最小差)

     Smallest Difference(最小差) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 Given a numb ...

  4. zoj 1033 与其说是搜索,不如说是枚举

    zoj 与其说是搜索,不如说是枚举,只不过是通过搜索来实现的罢了. 主要是要注意好闰年的判断,特别是要注意好一串数字的划分. 题意其实我也看了一个晚上,才渐渐的看懂. 题意: 给你一个字符串,其中包含 ...

  5. poj 1873 凸包+枚举

    The Fortified Forest Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6198   Accepted: 1 ...

  6. POJ 2718 Smallest Difference(贪心 or next_permutation暴力枚举)

    Smallest Difference Description Given a number of distinct decimal digits, you can form one integer ...

  7. 穷竭搜索: POJ 2718 Smallest Difference

    题目:http://poj.org/problem?id=2718 题意: 就是输入N组数据,一组数据为,类似 [1  4  5  6  8  9]这样在0~9之间升序输入的数据,然后从这些数据中切一 ...

  8. POJ 2718 Smallest Difference 枚举

    http://poj.org/problem?id=2718 题目大意: 给你一些数字(单个),不会重复出现且从小到大.他们可以组成两个各个位上的数字均不一样的数,如 0, 1, 2, 4, 6 ,7 ...

  9. poj 2010 Moo University - Financial Aid(优先队列(最小堆)+ 贪心 + 枚举)

    Description Bessie noted that although humans have many universities they can attend, cows have none ...

随机推荐

  1. Installation failed: Timeout was reached: Operation timed out after 10000 milliseconds with 0 out of 0 bytes received

    Trying this option worked for me. library(httr) with_config(use_proxy(...), install_github(...)) OR ...

  2. springboot快速入门(二)——项目属性配置(日志详解)

    一.概述 application.properties就是springboot的属性配置文件 在使用spring boot过程中,可以发现项目中只需要极少的配置就能完成相应的功能,这归功于spring ...

  3. 2017-2018-1 20155310 《信息安全系统设计基础》 实现mypwd

    2017-2018-1 20155310 <信息安全系统设计基础> 实现mypwd 作业要求: 1.学习pwd命令 2.研究pwd实现需要的系统调用(man -k; grep),写出伪代码 ...

  4. re 模块错误 error: bad character range

    下午,看到堆栈的内容.于是上机实验了一番 >>> bds = '10+6/5-4*2' # 数学运算表达式 想用 findall 把运算符号提取出来 >>> imp ...

  5. [并发并行]_[C/C++]_[C++标准库里的线程安全问题]

    场景 1.写普通的程序时, 经常会使用cout来做输出, 每个进程只有一个控制台, 如果多线程调用cout时会出状况吗? 2.之所以研究cout会不会在并发下调用有问题, 是因为曾经有一个bug的崩溃 ...

  6. js中两种定时器的设置及清除

    1.循环执行: var timeid = window.setInterval(“方法名或方法”,“延时”); window.clearInterval(timeid); <script typ ...

  7. 利用BlockingCollection实现生产者和消费者队列,实现写文本

    最近开发几个小项目,需要把结果写到txt文件里面,并且按照时间进行分文件,由于对于效率要求较高,所以采用 生产者和消费者 模型来进行写出文本,线程中只需要添加队列就立即返回,而不需要等待写文件的时间 ...

  8. 新建React Native项目步骤

    根据官方环境 https://reactnative.cn/docs/getting-started/ 搭建好之后 1.新建项目 打开React Native 命令行工具,并输入 react-nati ...

  9. (转载)jquery实现全选、反选、获得所有选中的checkbox

    举了7个不同的checkbox状态,和大家一一分享. 1.全选 $("#btn1").click(function(){ $("input[name='checkbox' ...

  10. 并发系列(四)-----CAS

    一 简介 保证Java中的原子操做方式有两种方式  1 加锁(可以理解悲观锁机制)  2 CAS(可以理解为乐观锁机制)  CAS全称是Compare and Swap 即比较并替换.在JDK中许多地 ...