【BZOJ 2986】 莫比乌斯函数+容斥原理
2986: Non-Squarefree Numbers
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 337 Solved: 156Description
一个正整数K被称为squarefree,如果它没有一个D^2(D>1)这样的约数。
Input
读入一个正整数N
Output
找出第N个不是squarefree的数。1<=N<=10^10
Sample Input
10Sample Output
27Hint
前10个非squarefree的数
4 8 9 12 16 18 20 24 25 27HINT
Source
【分析】
跟这题一模一样->传送门
【第一次二分打错。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxm 1000010
#define LL long long LL pri[Maxm],pl,mu[Maxm];
bool vis[Maxm];
void init()
{
for(LL i=;i<=Maxm-;i++)
{
if(!vis[i]) pri[++pl]=i,mu[i]=-;
for(LL j=;j<=pl;j++)
{
if(pri[j]*i>Maxm-) break;
vis[pri[j]*i]=;
if(i%pri[j]==) mu[pri[j]*i]=;
else mu[i*pri[j]]=-mu[i];
if(i%pri[j]==) break;
}
}
} LL n;
bool check(LL x)
{
LL ans=;
for(LL i=;i*i<=x;i++)
{
ans+=x/(i*i)*(-mu[i]);
}
return ans>=n;
} int main()
{
init();
scanf("%lld",&n);
LL l=,r=30000000000LL;
while(l<r)
{
LL mid=(l+r)>>;
if(check(mid)) r=mid;
else l=mid+;
}
printf("%lld\n",l);
return ;
}
2017-04-20 20:20:29
【BZOJ 2986】 莫比乌斯函数+容斥原理的更多相关文章
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ 2440 莫比乌斯函数+容斥+二分
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5473 Solved: 2679[Submit][Sta ...
- BZOJ 1101 莫比乌斯函数+分块
思路: 题目中的gcd(x,y)=d (x<=a,y<=b)可以转化成 求:gcd(x,y)=1 (1<=x<=a/d 1<=y<=b/d) 设 G(x,y)表示x ...
- BZOJ 2986: Non-Squarefree Numbers [容斥原理 二分]
题意:求第$n \le 10^{10}$个不是无平方因子数 二分答案, 容斥一下,0个质数的平方因子-1个..... 枚举$\sqrt$的平方因子乘上莫比乌斯函数,最后求出无平方因子数的个数取补集 # ...
- 【BZOJ 2440】【中山市选 2011】完全平方数 莫比乌斯函数+容斥原理
网上PoPoQQQ的课件: •题目大意:求第k个无平方因子数 •无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数 •首先二分答案 问题转化为求[1,x]之间有 ...
- 【整体二分+莫比乌斯函数+容斥原理】BZOJ2440
[题目大意] 求第k个不是完全平方数或完全平方数整数倍的数. [思路] 由于μ(i)*(n/i^2)=n,可以直接从1开始,得出非完全平方数/完全平方数倍数的数的个数 注意一下二分的写法,这里用的是我 ...
- BZOJ 2301 莫比乌斯函数+分块
思路: 同BZOJ1101 就是加个容斥 - http://blog.csdn.net/qq_31785871/article/details/54340241 //By SiriusRen #inc ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
随机推荐
- POJ 3164 Command Network ( 最小树形图 朱刘算法)
题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...
- python加速包numba并行计算多线程
1.下面直接上代码需要注意的地方numba的官网找到 1)有一些坑自己去numba的官网找找看,下面是我的写的一个加速的程序,希望对你有帮助. #coding:utf-8 import time fr ...
- jQuery动态给下拉列表添加一个选项(创建DOM对象)
使用的函数:
- ip_local_deliver && ip_local_deliver_finish
当ip包收上来,查路由,发现是发往本地的数据包时,会调用ip_local_deliver函数: ip_local_deliver中对ip分片进行重组,经过LOCAL_IN钩子点,然后调用ip_loca ...
- ntp/系统时钟/硬件时钟/双系统下计算机时间读取的问题
http://blog.chinaunix.net/uid-182041-id-3464524.html //linux系统时间和硬件时钟问题(date和hwclock) http://j ...
- 浅谈js变量作用域
变量的作用域也是前端面试题常考的一个问题,掌握下面几个规律可以帮你更好的理解js的作用域. 1.作用域优先级遵循就近原则,函数内部的作用域优先级大于外部 var a=456; var b=111; f ...
- java基础75 xpth技术(网页知识)
1.xpth技术 1.1.xpath的作用 主要用于快速获取所需的节点对象. list<Node> selectNodes("xpath"); 查询多个节点对象 ...
- 修饰符(动态String数组篇)--- 常用 解除疑问。
1.无修饰符----是直接传基本类型的地址过来,并没有把基本类型的指针复制一份入栈,所以一旦修改就是修改原来的值. 2.const 修饰符 与 无修饰符一致. 3.var修饰符 与 上一致. 4.ou ...
- **PHP转义Json里的特殊字符的函数
http://www.banghui.org/11332.html 在给一个 App 做 API,从服务器端的 MySQL 取出数据,然后生成 JSON.数据中有个字段叫 content,里面保存了文 ...
- 开源框架:SDWebImage
http://blog.csdn.net/uxyheaven/article/details/7909373 SDWebImage是我搞iOS以来少数佩服的框架,膜拜一下作者.真的写的非常棒! 这套开 ...