【洛谷】2120:[ZJOI2007]仓库建设【斜率优化DP】
P2120 [ZJOI2007]仓库建设
题目背景
小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题。
题目描述
L公司有N个工厂,由高到底分布在一座山上。
工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。
突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。
由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。
对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。
假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:
- 工厂i距离工厂1的距离Xi(其中X1=0);
- 工厂i目前已有成品数量Pi;
- 在工厂i建立仓库的费用Ci;
请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
输入输出格式
输入格式:
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
输出格式:
仅包含一个整数,为可以找到最优方案的费用。
输入输出样例
说明
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。
如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)5+(9-5)3=57,总费用67,不如前者优。
对于20%的数据, N ≤500;
对于40%的数据, N ≤10000;
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
Solution
很容易想到dp转移方程:$dp[i]=min(dp[j]+((x[i]-x[j+1])*p[j+1]+(x[i]-x[j+2])*p[j+2]+...+(x[i]-x[i-1])*p[i-1]+(x[i]-x[i])*p[i]))+c[i]$,最后一个i并没有影响。
化简得:$dp[i]=min(dp[j]+x[i]*\sum_{k=j+1}^{i}p[k]-\sum_{k=j+1}^{i}p[k]*x[k])+c[i]$
设$sump[i]=\sum_{j=1}^ip[j],sum[i]=\sum_{j=1}^ip[j]*x[j]$
那么$dp[i]=min(dp[j]+x[i]*(sump[i]-sump[j])-(sum[i]-sum[j]))+c[i]$
所以要求的实际上是最小的min中间的值。
当j比k优当且仅当$dp[j]+x[i]*(sump[i]-sump[j])-(sum[i]-sum[j])<dp[k]+x[i]*(sump[i]-sump[k])-(sum[i]-sum[k])$
就是$dp[j]-x[i]*sump[j]+sum[j]<dp[k]-x[i]*sump[k]+sum[k]$
$\frac{(dp[j]+sum[j])-(dp[k]+sum[k])}{sump[j]-sump[k]}<x[i]$
设$Y(i)=dp[i]+sum[i],X(i)=sump[i]$
那么$\frac{Y(j)-Y(k)}{X(j)-X(k)}<x[i]$
用斜率优化即可QAQ
先更新队首,队首比队中第二元素劣就删除。
再用队首更新当前dp值。
最后更新队尾,如果$work(t,t-1)>work(i,t)(work(j,k)表示上面公式的值)$,那么队尾无用。因为当$work(t,t-1)>=x[i]$时,$t-1$比$t$优。当$work(t,t-1)<x[i]$时,又因为$work(t,t-1)>work(i,t)$,$i$比$t$优。
最后再入队即可。
Code
#include<bits/stdc++.h>
#define LL long long
using namespace std; LL n;
LL dp[], sump[], sum[];
LL x[], p[], c[];
LL Y(int i) {
return dp[i] + sum[i];
} LL X(int i) {
return sump[i];
} double work(int j, int k) {
return 1.0 * (Y(j) - Y(k)) / (X(j) - X(k));
} LL q[];
int main() {
scanf("%lld", &n);
for(int i = ; i <= n; i ++) {
scanf("%lld%lld%lld", &x[i], &p[i], &c[i]);
sump[i] = sump[i - ] + p[i];
sum[i] = sum[i - ] + x[i] * p[i];
}
int h = , t = ;
for(int i = ; i <= n; i ++) {
while(h < t && work(q[h + ], q[h]) < x[i]) h ++;
int j = q[h]; dp[i] = dp[j] + x[i] * (sump[i] - sump[j]) - sum[i] + sum[j] + c[i];
while(h < t && work(q[t], q[t - ]) > work(i, q[t])) t --;
q[++t] = i;
}
printf("%lld", dp[n]);
return ;
}
【洛谷】2120:[ZJOI2007]仓库建设【斜率优化DP】的更多相关文章
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- [ZJOI2007] 仓库建设 - 斜率优化dp
大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...
- 洛谷2120 [ZJOI2007]仓库建设(斜率优化dp)
感觉和锯木厂那个题很类似的. 其实这个题还那个题唯一的区别就是\(dp\)转移式子中的\(f\)变成了\(g\) qwq不想多说了 直接看我的前一篇题解吧qwq #include<iostrea ...
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
随机推荐
- bzoj 1014: 洛谷 P4036: [JSOI2008]火星人
题目传送门:洛谷P4036. 题意简述: 有一个字符串,支持插入字符,修改字符. 每次需要查询两个后缀的LCP长度. 最终字符串长度\(\le 100,\!000\),修改和询问的总个数\(\le 1 ...
- Ubuntu使用apt-get upgrade升级时出错
今天在按照常规的sudo apt-get update更新软件列表后,再使用sudo apt-get upgrade升级软件时,出现了以下的错误: 正在设置 linux-image-extra-4.4 ...
- MySQL 5.7.17 Group Relication(组复制)搭建手册【转】
本博文介绍了Group Replication的两种工作模式的架构.并详细介绍了Single-Master Mode的部署过程,以及如何切换到Multi-Master Mode.当然,文末给出了Gro ...
- 数论-求n以内的质数
一.埃拉托斯特尼筛法 名字很高大上,然而并没有什么卵用…… 思路: 在把<=√n的质数所有的<=n的倍数剔除,剩下的就都是质数了,很容易理解…… 复杂度O(nloglogn) #inclu ...
- openjudge-NOI 2.5-1756 八皇后
题目链接:http://noi.openjudge.cn/ch0205/1756/ 题解: 上一道题稍作改动…… #include<cstdio> #include<algorith ...
- gitHub 迁移到gitlab上
GitHub 迁移到 GitLab 上 第一步在github上生成 token 地址 https://blog.csdn.net/u014175572/article/details/55510825 ...
- unity 代码有调整,重新导出 iOS 最烦的就是 覆盖导出后项目不能打开
unity 代码有调整,重新导出 iOS 最烦的就是 覆盖导出后项目不能打开,原因是 editor 里面的脚本,破坏了 Unity-iPhone.xcodeproj 里面的结构,具体是什么原因,也不 ...
- php 中更简洁的三元运算符 ?:
PHP 三元运算符是对参数赋值时候的一个简洁的主要用法. 一个主要的用法: PHP 三元运算符能够让你在一行代码中描述判定代码, 从而替换掉类似以下的代码: <?php if (isset($v ...
- python类中的私有方法
假设有如下一个python类: class Foo(object): def __a(self): print "Bet you can't see me..." def bar( ...
- python+selenium第一步 - 环境搭建
刚开始学习一门技术,肯定是要从环境搭建开始的,我也不例外. 首先选择需要安装的版本,我使用的是mac自带的2.7版本. selenium2,和火狐浏览器 为求稳定不会出现未知问题,我选择了seleni ...