题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

思路:

方法一:动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1],  vec[i+1]}

附加:记录左右节点位置

/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function(nums) {
var sum=0,maxsum=-2147483648,begin=0;
for(var i=0,len=nums.length;i<len;i++){
if(sum>=0){
sum=sum+nums[i];
}else{
sum=nums[i];
begin=i;
} if(maxsum<sum){
maxsum=sum;
left=begin;
right=i;
}
} return maxsum;
};

方法二

最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)

int maxSum1(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
for(int k = i; k < vec.size(); k++)
{
sum = ;
for(int j = i; j <= k; j++)
sum += vec[j];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
return maxsum;
}
 

算法三:

上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)

int maxSum2(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
{
sum = ;
for(int k = i; k < vec.size(); k++)
{
sum += vec[k];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
}
return maxsum;
}
算法四:
分治法, 下面贴上编程之美的解释, 复杂度为O(nlogn)

//求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right]
int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right)
{
if(start == end)
{
left = start;
right = left;
return vec[start];
}
int middle = start + ((end - start)>>);
int lleft, lright, rleft, rright;
int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和
int maxRight = maxSum3(vec, middle+, end, rleft, rright);//右半部分最大和
int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+], mleft = middle, mright = middle+;
int tmp = vec[middle];
for(int i = middle-; i >= start; i--)
{
tmp += vec[i];
if(tmp > maxLeftBoeder)
{
maxLeftBoeder = tmp;
mleft = i;
}
}
tmp = vec[middle+];
for(int i = middle+; i <= end; i++)
{
tmp += vec[i];
if(tmp > maxRightBorder)
{
maxRightBorder = tmp;
mright = i;
}
}
int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder);
if(res == maxLeft)
{
left = lleft;
right = lright;
}
else if(res == maxLeftBoeder+maxRightBorder)
{
left = mleft;
right = mright;
}
else
{
left = rleft;
right = rright;
}
return res;
}

【数组】Maximum Subarray的更多相关文章

  1. [leetcode53]最长子数组 Maximum Subarray Kadane's算法

    [题目] Given an integer array nums, find the contiguous subarray (containing at least one number) whic ...

  2. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  3. 动态规划法(八)最大子数组问题(maximum subarray problem)

    问题简介   本文将介绍计算机算法中的经典问题--最大子数组问题(maximum subarray problem).所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组.比如 ...

  4. 53. Maximum Subarray最大求和子数组12 3(dp)

    [抄题]: Find the contiguous subarray within an array (containing at least one number) which has the la ...

  5. [LintCode] Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  6. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  7. LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...

  8. leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

    Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) whic ...

  9. Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum

    这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...

  10. Maximum Subarray Sum

    Maximum Subarray Sum 题意 给你一个大小为N的数组和另外一个整数M.你的目标是找到每个子数组的和对M取余数的最大值.子数组是指原数组的任意连续元素的子集. 分析 参考 求出前缀和, ...

随机推荐

  1. http://localhost:8080/hello?wsdl

    <definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-u ...

  2. 排列<一>

    理论和习题来源于书本,有些能用计算机模拟的题尽量用代码来解. 1.5个球放在3个不同的盒子里面,允许有盒子不放球,求有多少种可能?解:穷举,设盒子A,B,C,每个盒子都有0-5个球的可能,但是三个盒子 ...

  3. 从hbase到hive,以及sqoop转到mysql解析

    https://blog.csdn.net/qq_33689414/article/details/80328665 hive关联hbase的配置文件 hive和hbase同步https://cwik ...

  4. 【lazy标记得思想】HDU3635 详细学习并查集

    部分内容摘自以下大佬的博客,感谢他们! http://blog.csdn.net/dm_vincent/article/details/7769159 http://blog.csdn.net/dm_ ...

  5. UniGui之锱铢积累(仔细看这个文件)

    http://www.doc88.com/p-4022977294324.html 这个是Word文档

  6. cxgrid动态显示行号

    uses cxLookAndFeelPainters; type TMyCxGrid = class(TObject)    class procedure DrawIndicatorCell(    ...

  7. matlab中使用正弦波合成方波(带动画)

    x=:*pi; :: s=; ::step s = s+/i*sin(i*x); end plot(s);set(figure(),'visible','off'); filename=[num2st ...

  8. 一起学习MVC(4)Controllers的学习

                控制器Controllers Controllers为控制器文档,AccountControllers内的方法对应View→Account下的cshtml文件. 我们看到Aco ...

  9. BZOJ 1002--[FJOI2007]轮状病毒(高精度)

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6858  Solved: 3745[Submit][Statu ...

  10. python 通过 pymysql模块 操作 mysql 数据库

    Python 中操作 MySQL 步骤 安装模块 pip install pymysql 引入模块 在py文件中引入pymysql模块 from pymysql import * Connection ...