【数组】Maximum Subarray
题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路:
方法一:动态规划, 数组为vec[],设dp[i] 是以vec[i]结尾的子数组的最大和,对于元素vec[i+1], 它有两种选择:a、vec[i+1]接着前面的子数组构成最大和,b、vec[i+1]自己单独构成子数组。则dp[i+1] = max{dp[i]+vec[i+1], vec[i+1]}
附加:记录左右节点位置
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function(nums) {
var sum=0,maxsum=-2147483648,begin=0;
for(var i=0,len=nums.length;i<len;i++){
if(sum>=0){
sum=sum+nums[i];
}else{
sum=nums[i];
begin=i;
} if(maxsum<sum){
maxsum=sum;
left=begin;
right=i;
}
} return maxsum;
};
方法二:
最简单的就是穷举所有的子数组,然后求和,复杂度是O(n^3)
int maxSum1(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
for(int k = i; k < vec.size(); k++)
{
sum = ;
for(int j = i; j <= k; j++)
sum += vec[j];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
return maxsum;
}
算法三:
上面代码第三重循环做了很多的重复工作,稍稍改进如下,复杂度为O(n^2)
int maxSum2(vector<int>&vec, int &left, int &right)
{
int maxsum = INT_MIN, sum = ;
for(int i = ; i < vec.size(); i++)
{
sum = ;
for(int k = i; k < vec.size(); k++)
{
sum += vec[k];
if(sum > maxsum)
{
maxsum = sum;
left = i;
right = k;
}
}
}
return maxsum;
}


//求数组vec【start,end】的最大子数组和,最大子数组边界为[left,right]
int maxSum3(vector<int>&vec, const int start, const int end, int &left, int &right)
{
if(start == end)
{
left = start;
right = left;
return vec[start];
}
int middle = start + ((end - start)>>);
int lleft, lright, rleft, rright;
int maxLeft = maxSum3(vec, start, middle, lleft, lright);//左半部分最大和
int maxRight = maxSum3(vec, middle+, end, rleft, rright);//右半部分最大和
int maxLeftBoeder = vec[middle], maxRightBorder = vec[middle+], mleft = middle, mright = middle+;
int tmp = vec[middle];
for(int i = middle-; i >= start; i--)
{
tmp += vec[i];
if(tmp > maxLeftBoeder)
{
maxLeftBoeder = tmp;
mleft = i;
}
}
tmp = vec[middle+];
for(int i = middle+; i <= end; i++)
{
tmp += vec[i];
if(tmp > maxRightBorder)
{
maxRightBorder = tmp;
mright = i;
}
}
int res = max(max(maxLeft, maxRight), maxLeftBoeder+maxRightBorder);
if(res == maxLeft)
{
left = lleft;
right = lright;
}
else if(res == maxLeftBoeder+maxRightBorder)
{
left = mleft;
right = mright;
}
else
{
left = rleft;
right = rright;
}
return res;
}
【数组】Maximum Subarray的更多相关文章
- [leetcode53]最长子数组 Maximum Subarray Kadane's算法
[题目] Given an integer array nums, find the contiguous subarray (containing at least one number) whic ...
- LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 动态规划法(八)最大子数组问题(maximum subarray problem)
问题简介 本文将介绍计算机算法中的经典问题--最大子数组问题(maximum subarray problem).所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组.比如 ...
- 53. Maximum Subarray最大求和子数组12 3(dp)
[抄题]: Find the contiguous subarray within an array (containing at least one number) which has the la ...
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- 【leetcode】Maximum Subarray (53)
1. Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- Maximum Subarray / Best Time To Buy And Sell Stock 与 prefixNum
这两个系列的题目其实是同一套题,可以互相转换. 首先我们定义一个数组: prefixSum (前序和数组) Given nums: [1, 2, -2, 3] prefixSum: [0, 1, 3, ...
- Maximum Subarray Sum
Maximum Subarray Sum 题意 给你一个大小为N的数组和另外一个整数M.你的目标是找到每个子数组的和对M取余数的最大值.子数组是指原数组的任意连续元素的子集. 分析 参考 求出前缀和, ...
随机推荐
- ansible-playbook api 2.0 运行项目
上篇 api 的文章 <ansible-playbook api 2.0 直接运行> 介绍的是直接将 tasks 直接写在 代码中的,本文介绍 api 运行整个项目 [root@10_1_ ...
- web.xml 404 500 配置
web.xml <error-page> <error-code>404</error-code> <location>/error404.html&l ...
- gorename: easy refactoring tool for Golang[转]
To inaugurate this attempt of blog, I’ll talk about gorename a small but incredibly useful tool I ju ...
- Windows环境下的安装gcc
Windows具有良好的界面和丰富的工具,所以目前linux开发的流程是,windows下完成编码工作,linux上实现编译工作. 为了提高工作效率,有必要在windows环境下搭建一套gcc,gdb ...
- Exception in thread Thread-3:第三个线程意外
Status:Executing -train.py 02/09/2019 09:33:38 INFO Log level set to: INFO Using TensorFlow backend. ...
- Oracle定义DES加密解密及MD5加密函数
http://blog.csdn.net/xdweleven/article/details/38319351 (1)DES加密函数create or replace functionencryp ...
- Python学习-18.Python中的错误处理(三)
在某些情况下,我们需要定义自己的异常并且抛出 先定义一个错误: class MyError(BaseException): def __init__(self): pass 上面定义了一个叫MyErr ...
- SSH登录警告(WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!)
在配置本机与docker容器实现ssh无密码访问时出现以下报错 # federico @ linux in ~ [18:35:52] C:127$ sudo ssh-copy-id -i .ssh/i ...
- 数据库选项--ALTER DATABASE WITH 选项
指定当数据库从一种状态转换到另一种状态时,何时回滚未完成的事务. 如果终止子句被忽略,则当数据库中存在任何锁时,ALTER DATABASE 语句将无限期等待. 只能指定一条终止子句,而且该子句应跟在 ...
- MySql采用range分区可提升查询效率
简介: RANGE分区基于一个给定的连续区间范围,早期版本RANGE主要是基于整数的分区.在5.7版本中DATE.DATETIME列也可以使用RANGE分区,同时在5.5以上的版本提供了基于非整形的R ...