【AtCoder】AGC005F - Many Easy Problems
题解
我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可
一条边的贡献是\(\binom{n}{k} - \binom{a}{k} - \binom{n - a}{k}\)就是在n个点里选k个点,去掉不合法的情况也就是k个点都在去掉这条边的两个子树里
然后我们要统计的就是\(\binom{a}{k} + \binom{n - a}{k}\)
这个可以转化成\(ans_{k} = \sum_{i = 1}^{n} b_{i} \binom{i}{k}\)
\(ans_{k} = \frac{1}{k!} \sum_{i = 1}^{n} b_{i} i! \frac{1}{(i - k)!}\)
这个数组是可以卷积的,只要把一个倒过来就行
设\(f(i) = \frac{1}{(n - i)!}\)
\(g(i) = b_{i}i!\)
\(h = g * f\)
\(ans_{k} = h(N + k)\)
代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define RG register
#define MAXN 200005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE;
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
const int MOD = 924844033,L = (1 << 19),G = 5;
int N,f[L + 5],fac[MAXN],invfac[MAXN],b[L + 5],W[L + 5];
int mul(int a,int b) {return 1LL * a * b % MOD;}
int inc(int a,int b) {a = a + b;if(a >= MOD) a -= MOD;return a;}
int fpow(int x,int c) {
int t = x,res = 1;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(mul(fac[n],invfac[m]),invfac[n - m]);
}
int dfs(int u,int fa) {
int siz = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa) {
siz += dfs(v,u);
}
}
if(fa != 0) {
b[siz]++;
b[N - siz]++;
}
return siz;
}
void NTT(int *a,int LEN,int on) {
for(int i = 1 , j = LEN / 2 ; i < LEN - 1 ; ++i) {
if(i < j) swap(a[i],a[j]);
int k = LEN / 2;
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= LEN ; h <<= 1) {
int wn = W[(L + on * L / h) % L];
for(int k = 0 ; k < LEN ; k += h) {
int w = 1;
for(int j = k ; j < k + h / 2 ; ++j) {
int64 u = a[j],t = 1LL * a[j + h / 2] * w;
a[j] = (u + t) % MOD;
a[j + h / 2] = (u - t + 1LL * MOD * MOD) % MOD;
w = mul(w,wn);
}
}
}
if(on == -1) {
int invL = fpow(LEN,MOD - 2);
for(int i = 0 ; i < LEN ; ++i) a[i] = mul(a[i],invL);
}
}
void Solve() {
read(N);
int u,v;
for(int i = 1 ; i < N ; ++i) {
read(u);read(v);add(u,v);add(v,u);
}
dfs(1,0);
fac[0] = 1;
for(int i = 1 ; i <= N ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[N] = fpow(fac[N],MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
for(int i = 0 ; i <= N ; ++i) f[N - i] = invfac[i];
for(int i = 1 ; i <= N ; ++i) b[i] = mul(b[i],fac[i]);
W[0] = 1;W[1] = fpow(G,(MOD - 1) / L);
for(int i = 2 ; i < L ; ++i) W[i] = mul(W[i - 1],W[1]);
int t = 1;
while(t <= 2 * N) t <<= 1;
NTT(b,t,1);NTT(f,t,1);
for(int i = 0 ; i < t ; ++i) f[i] = mul(f[i],b[i]);
NTT(f,t,-1);
for(int i = 1 ; i <= N ; ++i) {
int ans = mul(f[i + N],invfac[i]);
ans = inc(mul(N,C(N,i)),MOD - ans);
out(ans);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【AtCoder】AGC005F - Many Easy Problems的更多相关文章
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【模拟】NEERC15 E Easy Problemset (2015-2016 ACM-ICPC)(Codeforces GYM 100851)
题目链接: http://codeforces.com/gym/100851 题目大意: N个人,每个人有pi个物品,每个物品价值为0~49.每次从1~n顺序选当前这个人的物品,如果这个物品的价值&g ...
- 【AtCoder】ARC092 D - Two Sequences
[题目]AtCoder Regular Contest 092 D - Two Sequences [题意]给定n个数的数组A和数组B,求所有A[i]+B[j]的异或和(1<=i,j<=n ...
- 【Atcoder】CODE FESTIVAL 2017 qual A D - Four Coloring
[题意]给定h,w,d,要求构造矩阵h*w满足任意两个曼哈顿距离为d的点都不同色,染四色. [算法]结论+矩阵变换 [题解] 曼哈顿距离是一个立着的正方形,不方便处理.d=|xi-xj|+|yi-yj ...
- 【AtCoder】ARC 081 E - Don't Be a Subsequence
[题意]给定长度为n(<=2*10^5)的字符串,求最短的字典序最小的非子序列字符串. http://arc081.contest.atcoder.jp/tasks/arc081_c [算法]字 ...
- 【AtCoder】AGC022 F - Leftmost Ball 计数DP
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...
- 【AtCoder】ARC067 F - Yakiniku Restaurants 单调栈+矩阵差分
[题目]F - Yakiniku Restaurants [题意]给定n和m,有n个饭店和m张票,给出Ai表示从饭店i到i+1的距离,给出矩阵B(i,j)表示在第i家饭店使用票j的收益,求任选起点和终 ...
- 【AtCoder】ARC095 E - Symmetric Grid 模拟
[题目]E - Symmetric Grid [题意]给定n*m的小写字母矩阵,求是否能通过若干行互换和列互换使得矩阵中心对称.n,m<=12. [算法]模拟 [题解]首先行列操作独立,如果已确 ...
- 【Atcoder】AGC022 C - Remainder Game 搜索
[题目]C - Remainder Game [题意]给定n个数字的序列A,每次可以选择一个数字k并选择一些数字对k取模,花费2^k的代价.要求最终变成序列B,求最小代价或无解.n<=50,0& ...
随机推荐
- RACCommand
RACCommand是ReactiveCocoa中用于表示UI操作的一个类.它包含一个代表了UI操作的结果的信号以及标识操作当前是否被执行的一个状态. 1.创建新的RACCommand self.ex ...
- 2017 清北济南考前刷题Day 5 afternoon
期望得分:100+100+30=230 实际得分:0+0+0=30 T1 直接模拟 #include<cstdio> #include<iostream> using name ...
- negativeView 的使用
参考链接:http://blog.csdn.net/u012702547/article/details/51253222 1.一般来讲,是配合drawerLayout使用的,在xml文件中声明,其中 ...
- 非常强力的reduce
Array 的方法 reduce 是一个有非常多用处的函数. 它一个非常具有代表性的作用是将一个数组转换成一个值.但是你可以用它来做更多的事. 1.使用"reduce"代替&quo ...
- [OI]省选前模板整理
省选前把板子整理一遍,如果发现有脑抽写错的情况,欢迎各位神犇打脸 :) 数学知识 数论: //组合数 //C(n,m) 在n个数中选m个的方案数 ll C[N][N]; void get_C(int ...
- 【专题】平衡树(Treap,fhq-treap)
[旋转] 平衡树中的旋转是指在不改变中序遍历的前提下改变树的形态的方式.(中序遍历=排名顺序) 右旋将当前点的左节点旋上来,左旋反之.(图侵删) void rturn(int &k){ int ...
- C++中getline()和cin()同时使用时的注意事项
今天做tju的oj,遇到一个问题,想前部分用cin函数一个一个的读入数据,中间部分利用getline()一起读入一行,但是测试发现,cin之后的getline函数并无作用,遂谷歌之.原来cin只是在缓 ...
- CentOS 6 / RHEL 6配置bonding 4模式
实现bond 802.3ad or 4 模式:(IEEE 802.3ad), 方式:创建一个整合的组,这个组会共享网速和网络双工(duplex)设置.模式 4 会根据 IEEE 802.3ad 标准使 ...
- 【leetcode 简单】 第五十八题 计数质数
统计所有小于非负整数 n 的质数的数量. 示例: 输入: 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 . class Solution: def cou ...
- 15、BigDecimal类简介
BigDecimal类概述 由于在运算的时候,float类型和double很容易丢失精度,在金融.银行等对数值精度要求非常高的领域里面,就不能使用float或double了,为了能精确的表示.计算浮点 ...