已知数列$\{a_n\}$满足:$a_n>0,a_{n+1}+\dfrac{1}{a_n}<2,n\in N^*$.
求证:
(1)$a_{n+2}<a_{n+1}<2 (n\in N^*)$
(2)$a_n>1 (n\in N^*)$


第二题:分析:由题意$\{a_n\}$单调递减又有下界,故有极限,记$\lim\limits_{n\longrightarrow +\infty}a_n=x$
则由$a_{n+1}+\dfrac{1}{a_n}<2$两边取极限得$x+\dfrac{1}{x}\le2$,又由于$x+\dfrac{1}{x}\ge2$故$\lim\limits_{n\longrightarrow +\infty}a_n=1$
由单调递减得$a_n>1$

注:也可以用反证法,提示:关键递推式$\dfrac{1}{a_{n+1}-1}>1+\dfrac{1}{a_n-1}$

MT【159】单调有界有极限的更多相关文章

  1. MT【155】单调有界必有极限

    (清华2017.4.29标准学术能力测试20) 已知数列$\{a_n\}$,其中$a_1=a$,$a_2=b$,$a_{n+2}=a_n-\dfrac 7{a_{n+1}}$,则_______ A.$ ...

  2. Matlab求极限

    matlab求极限(可用来验证度量函数或者隶属度函数)可用来验证是否收敛,取值范围等等. 一.问题来源 搜集聚类资料时,又看到了隶属度函数,没错,就是下面这个,期间作者提到m趋于2是,结果趋于1,我想 ...

  3. python数学第一天【极限存在定理】

    1.基本回忆 2.两边夹定理 推论1. 基本三角函数的极限 2.极限存在定理 单调有界数列必有极限 (1)单调递增有上界数列必有极限 (2)单调递减有下界数列必有极限 推论1: (1+1/n)^n有极 ...

  4. 【2】从零认识中心极限思想-e往无尽

    目录 e往无尽 单调性.有界性 \(e^{-x^2}\)的积分性质 函数列的近似 傅里叶的方案 三角函数系的正交性 傅立叶展开 傅立叶展开式的指数形式 e往无尽 无论是学高数,还是学习数分,我们在讲到 ...

  5. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  6. '"千"第一周学习情况记录

    一周过去了,今天将我这一周的学习内容和主要感想记录与此和大家共同分享,一起进步.我将自己的学习计划命名为"千",因为我喜欢这个字,希望能用此来鼓舞自己不断前进.时间总是很快的,这一 ...

  7. 第五回. $e$ 的引入

    假如你有 $1$ 块钱, 存银行, 利率为 $100\%$, 那么一年后本息和为$$1+1=2.$$ 如果你换种存法, 存半年, 把本息和取出来, 再存半年, 那么一年后本息和为$$\left(1+\ ...

  8. 数学常数e的含义

    转载:   http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...

  9. 一个形式较精细的Strling公式的证明

    近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e} ...

随机推荐

  1. [WPF]解决模板中ContextMenu绑定CommandParameter的问题

    直接上代码,首先是一个ContextMenu的模板: <ContextMenu x:Key="Menu" BorderThickness="0.3" Fo ...

  2. Babylon.js官方性能优化文档中文翻译

    在这里列出Babylon.js官方性能优化文档的中英文对照,并在CardSimulate项目里对其中的一些优化方法进行实践. How To 如何 Optimize your scene 优化你的场景 ...

  3. C/C++作用域运算符::

    ::是运算符中等级最高的,它分为三种:全局作用域符,类作用域符,命名空间作用域符 全局作用 全局作用域符号:当全局变量在局部函数中与其中某个变量重名,那么就可以用::来区分如:  char ch; / ...

  4. Window10家庭版启动hyper-v虚拟机组件

    在安装docker的时候发现如果直接使用docker for windows,对系统的要求是window10专业版或企业版,家庭版本身没有hyper-v,不能支持 虚拟化.但是后来我在搜索过程中发现, ...

  5. springboot 前后端分离开发 从零到整(四、更改密码操作)

    前端发送更改密码请求,头部携带token,服务端拦截器拦截头部token并解析,根据token中的信息来查询用户信息.需要登录才能进行的操作是由自己定的,有些操作可以直接放行.具体实现是: 上一章写到 ...

  6. C#如何在各类控件中输入\输出数据

    文本框:TextBox Text - 按钮文字 TextBox.text=""; s=TextBox.text; 单选按钮+复选按钮 RadioButton,CheckBox Te ...

  7. React Native移动开发实战-3-实现页面间的数据传递

    React Native使用props来实现页面间数据传递和通信.在React Native中,有两种方式可以存储和传递数据:props(属性)以及state(状态),其中: props通常是在父组件 ...

  8. mongodb基本使用(一)

    1.启动.停止和重启mongodb服务 brew services start mongodb  ---启动 brew services stop mongodb --停止 brew services ...

  9. (第十一周)Beta—review阶段成员贡献分

    项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 个人贡献分=基础分+表现分 基础分=5*5*0.5/5=2.5 成员得分如下: 成员 基础分 表现分 个人贡献 ...

  10. bootstrap table的展开行问题

    照着网上与api里说的添加detailView属性设置为true,detailFormatter属性为展开后的内容,但是设置之后发现,在表格每一行最前面是多出一列正常该显示"+"的 ...