已知数列$\{a_n\}$满足:$a_n>0,a_{n+1}+\dfrac{1}{a_n}<2,n\in N^*$.
求证:
(1)$a_{n+2}<a_{n+1}<2 (n\in N^*)$
(2)$a_n>1 (n\in N^*)$


第二题:分析:由题意$\{a_n\}$单调递减又有下界,故有极限,记$\lim\limits_{n\longrightarrow +\infty}a_n=x$
则由$a_{n+1}+\dfrac{1}{a_n}<2$两边取极限得$x+\dfrac{1}{x}\le2$,又由于$x+\dfrac{1}{x}\ge2$故$\lim\limits_{n\longrightarrow +\infty}a_n=1$
由单调递减得$a_n>1$

注:也可以用反证法,提示:关键递推式$\dfrac{1}{a_{n+1}-1}>1+\dfrac{1}{a_n-1}$

MT【159】单调有界有极限的更多相关文章

  1. MT【155】单调有界必有极限

    (清华2017.4.29标准学术能力测试20) 已知数列$\{a_n\}$,其中$a_1=a$,$a_2=b$,$a_{n+2}=a_n-\dfrac 7{a_{n+1}}$,则_______ A.$ ...

  2. Matlab求极限

    matlab求极限(可用来验证度量函数或者隶属度函数)可用来验证是否收敛,取值范围等等. 一.问题来源 搜集聚类资料时,又看到了隶属度函数,没错,就是下面这个,期间作者提到m趋于2是,结果趋于1,我想 ...

  3. python数学第一天【极限存在定理】

    1.基本回忆 2.两边夹定理 推论1. 基本三角函数的极限 2.极限存在定理 单调有界数列必有极限 (1)单调递增有上界数列必有极限 (2)单调递减有下界数列必有极限 推论1: (1+1/n)^n有极 ...

  4. 【2】从零认识中心极限思想-e往无尽

    目录 e往无尽 单调性.有界性 \(e^{-x^2}\)的积分性质 函数列的近似 傅里叶的方案 三角函数系的正交性 傅立叶展开 傅立叶展开式的指数形式 e往无尽 无论是学高数,还是学习数分,我们在讲到 ...

  5. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  6. '"千"第一周学习情况记录

    一周过去了,今天将我这一周的学习内容和主要感想记录与此和大家共同分享,一起进步.我将自己的学习计划命名为"千",因为我喜欢这个字,希望能用此来鼓舞自己不断前进.时间总是很快的,这一 ...

  7. 第五回. $e$ 的引入

    假如你有 $1$ 块钱, 存银行, 利率为 $100\%$, 那么一年后本息和为$$1+1=2.$$ 如果你换种存法, 存半年, 把本息和取出来, 再存半年, 那么一年后本息和为$$\left(1+\ ...

  8. 数学常数e的含义

    转载:   http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...

  9. 一个形式较精细的Strling公式的证明

    近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e} ...

随机推荐

  1. 程序设计 之 C#实现《拼图游戏》 (上)代码篇

    原理详解请参考博客中 拼图游戏(下)原理篇 http://www.cnblogs.com/labixiaohei/p/6713761.html 功能描述: 1.用户自定义上传图片 2.游戏难度选择:简 ...

  2. exit命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/itcomputer/p/4157859.html 用途说明 exit命令用于退出当前shell,在shell脚本中可以 ...

  3. dubbo支持协议及具体对比

    对dubbo的协议的学习,可以知道目前主流RPC通信大概是什么情况,本文参考dubbo官方文档 http://dubbo.io/User+Guide-zh.htm dubbo共支持如下几种通信协议: ...

  4. caffe 预训练 或者Fine-Tuning 操作

    1.使用预训练模型,需要修改训练的prototxt,将layer name改为与要使用模型的layer name相同即可. Borrowing Weights from a Pretrained Ne ...

  5. mybatis之insert语句报错Cause: java.sql.SQLException: sql injection violation, syntax error: ERROR. token : WHERE,

    报错日志:org.springframework.jdbc.UncategorizedSQLException: Error updating database. Cause: java.sql.SQ ...

  6. Scrum Meeting 6 -2014.11.12

    今天apec最后一天,大部分任务都差不多了,局部测试问题不大.大家修复下小细节就可以开始整合了. Member Today’s task Next task 林豪森 协助测试及服务器部署 协助测试及服 ...

  7. Daily Scrumming* 2015.10.26(Day 7)

    一.总体情况总结 今天我们开会具体讨论了一下接下来的任务.还详细讨论了一下分数的分配,具体分数分配我们会在下一篇博客中详细说明. 我们下一周大致的工作安排如下: 1.UI:完成社团后台界面的设计,以及 ...

  8. 2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段

    2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段 最后的一周,时间越来越紧张,因为之前的拖沓和一些事情的耽误,导致了如今的紧张,这一周应该是我们小组效率最高 ...

  9. web14 validation.xml配置 登录验证文件配置

    电影网站:www.aikan66.com 项目网站:www.aikan66.com 游戏网站:www.aikan66.com 图片网站:www.aikan66.com 书籍网站:www.aikan66 ...

  10. 第二阶段每日站立会议Forth Day

    昨天对于程序中的字体显示进行细化修改,使界面更美观 今天准备继续调试手机界面 遇到的问题:上几次Tomcat运行正常,今天突然出现问题,Tomcat服务可以打开,但是无法连接到数据库