这题是玄学的数论

首先考虑如何枚举偶数点度的图

可以考虑取出i-1个点 那么成图的数量为2^C(i-1,2)

(原因单独取出的i点能平衡已建图中的奇数点,原因是某种性质。。。。)

然后求带联通标号的欧拉图

 1 #include<iostream>
2 #include<cstdio>
3 #include<cstring>
4 #include<string>
5 #include<algorithm>
6 #include<vector>
7 #include<cmath>
8 #include<bits/stdc++.h>
9 #include<stack>
10 #include<queue>
11 #include<set>
12 #define MAXN 1000001
13 #define ps push_back
14 #define pt printf("--------\n");
15 #define ll long long
16 using namespace std;
17 const ll mod=1e9+7;
18 ll g[MAXN],f[MAXN];
19 ll jie[MAXN],ni[MAXN],ni_c[MAXN];ll n;
20 ll pow(ll x,ll y)
21 {
22 ll ans=1;
23 while(y){
24 if((y&1)==1)ans=(ans*x)%mod;
25 x=(x*x)%mod;
26 y>>=1;
27 }
28 return ans%mod;
29 }
30 ll C(ll x,ll y)
31 {
32 if(y>x)return 0;return (jie[x]*ni_c[y]%mod*ni_c[x-y]%mod+mod)%mod;
33 }
34 int main()
35 {
36 scanf("%lld",&n);
37 jie[1]=1;jie[0]=1;ni[1]=1;ni_c[1]=1;ni_c[0]=1;ni[0]=1;
38 for(ll i=2;i<=n;++i){
39 jie[i]=(jie[i-1]*i)%mod;
40 ni[i]=((mod-mod/i)*ni[mod%i])%mod;
41 ni_c[i]=(ni_c[i-1]*ni[i])%mod;
42 }
43 g[1]=1;
44 for(ll i=2;i<=n;++i){
45 g[i]=pow(2ll,C(i-1ll,2ll))%mod;
46 // printf("C=%lld g[%lld]=%lld\n",C(i-1,2ll),i,g[i]);
47 }
48 f[1]=1;
49 for(ll i=2;i<=n;++i)
50 {
51 f[i]=(f[i]+g[i])%mod;
52 for(ll j=1;j<=i-1;++j)
53 {
54 f[i]=(f[i]-(f[j]*g[i-j]%mod*C(i-1ll,j-1ll)%mod)+mod)%mod;
55 //printf("f[%lld]=%lld g[%lld]=%lld\n",j,f[j],i-j,g[i-j]);
56 }
57 f[i]%=mod;
58 //printf("f[%lld]=%lld\n",i,f[i]);
59 }
60 printf("%lld\n",(f[n]*C(n,2)+mod)%mod);
61 }

【模拟7.14】建造游乐园(play)的更多相关文章

  1. [NOIP模拟测试3] 建造游乐园 题解(欧拉图性质)

    Orz 出题人石二队爷 我们可以先求出有n个点的联通欧拉图数量,然后使它删或增一条边得到我们要求的方案 也就是让它乘上$C_n^2$ (n个点里选2个点,要么删边要么连边,选择唯一) 那么接下来就是求 ...

  2. 模拟3题解 T3建造游乐园

    T3建造游乐园 这题的关键是推式子 i个点中,有g[i]个方案是度为偶数但不一定连通那么就要减去不合法的设已有j个合法,其个数为f[j],剩下i-j个的方案数是g[i-j]选出来一个固定的点在合法的j ...

  3. NOIP模拟测试3「序列·熟练剖分·建造游乐园(play)」

    ---恢复内容开始--- 序列 刚调出来样例就A了,假装是水题. 因为是乱序,我们要求出来每两项之间最小公比,而不是直接比 求出来每两项之间最小公比,然后扫一遍就完了.(还要注意重复情况) 那么问题就 ...

  4. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

  5. 20210501 序列,熟练剖分(tree),建造游乐园(play)

    考场 \(65+5+0\),并列 rk2 最高分 \(55+10+10\) T1:等比数列可以写作 \(q^kx\),发现 \(q\le1000\) 且有一档分为 \(a_i\le100\),想到 \ ...

  6. NOIP模拟测试14

    考完19了再写14,我也是够咕的. 14的题很好,也充分暴露了我的问题. T1是个分析性质推结论的题 对于区间[L,R],不妨设a[L]!=a[R],那么两个端点对答案没有贡献,也就是[L+1,R], ...

  7. noip模拟赛#14

    #14: T1:f[x]=x-1(x&1)||x/2(x&1=0) 求[n,m]有多少个数可以通过变换得到k.(1e9). =>好像cf上看过类似的题,用二进制的方式来写.不过我 ...

  8. [考试反思]0807NOIP模拟测试14:承认

    一大排并列Rank#9之一. 考试题还没改完(而且并不会模拟退火)所以题解又只能咕了 然而并不想吐槽T2对sjzyz是原题导致4个AC里面有3个他们的 虽说这次的成绩不怎么样,但是这次的考试过程是全新 ...

  9. 【NOIP2016提高A组模拟9.14】数列编辑器

    题目 分析 比赛上,没有注意到询问只询问光标前面,于是只打了个暴力. 因为询问只询问光标前面,首先,当光标向后每移动到一个位置,顺便将这个位置的前缀和,和最大前缀和求出来. 总之,模拟 #includ ...

随机推荐

  1. js--吐血总结最近遇到的变态表单校验---element+原生+jq+easyUI(前端职业生涯见过的最烦的校验)

    最近写了无数各种形式的表单,记录下奇奇怪怪的校验规则~ 一:首先是element自带的rules校验规则: element作为常用框架,自带rules属性简单易懂,官方文档一目了然,不再赘述,应付常用 ...

  2. BUAA OS实验调试指南:从看懂到看开

    一般的调试流程其实很简单:发现问题,稳定复现,确定临界条件,定位问题,修复问题,核查结果.迭代这个过程,形成一个闭环 老实说,OS的实验代码,开箱体验极差,程序跳来跳去,进了Lab4后还要考虑内核态切 ...

  3. 无连接运输:UDP

    多路复用和解复用与校验和是UDP唯一能做的事,运输层的协议必须做点什么,什么都没有就不需要这一层了. 为什么要使用UDP 既然有了可靠传输的TCP,为什么还要在udp之上来构件应用呢? 有效载荷大,T ...

  4. [刷题] 17 Letter Combinations of a Phone Number

    要求 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合 1 不对应任何字母    示例 输入:"23" 输出:["ad", "ae&q ...

  5. Linux——定时清空日志内容和删除日志文件

    前言 最近在做性能压测试,会生成大量的日志,导致后续越压越慢,最终磁盘空间占满之类的问题.老是要手动删除日志文件,为避免此类问题发生,编写一个Linux日志定时清理的脚本,一劳永逸. 1.shell脚 ...

  6. SVN库迁移到GitHub

    创建新目录,cmd进入到新目录,执行如下命令: git svn init svn://10.10.10.10/net/QA_Dept git svn fetch git remote add orig ...

  7. 科普 AF摄像头

    AF(Auto Focus)自动对焦:自动对焦有两种方式,根据控制原理分为主动式和被动式两种.主动式自动对焦通过相机发射红外线,根据反射回来的射线信号确定被摄体的距离,再自动调节镜头,实现自动对焦.被 ...

  8. Django(41)详解异步任务框架Celery

    celery介绍   Celery是由Python开发.简单.灵活.可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务.Celery ...

  9. Jmeter(四十九) - 从入门到精通高级篇 - jmeter使用监视器结果监控tomcat性能(详解教程)

    1.简介 上一篇宏哥讲解了利用jmeter的插件来监控服务器资源,这一篇讲解分享如何使用jmeter的监视器结果监控tomcat性能. 2.准备工作 文章标题中提到jmeter和tomcat,那么只需 ...

  10. 日常Bug排查-抛异常不回滚

    日常Bug排查-抛异常不回滚 前言 日常Bug排查系列都是一些简单Bug排查,笔者将在这里介绍一些排查Bug的简单技巧,同时顺便积累素材_. Bug现场 最近有人反映java应用操作数据库的时候,抛异 ...