题意:

      给你一个强连通图,然后问你是否可以找到任意满足条件的集合S,S是非空集合,T是S的补集,满足sum(D[i ,j]) <= sum(D[j,i] + B[j,i]) i属于S集合,j属于T集合(其实也就暗示了i,j是S,T的割边)。

思路:

       无源汇上下流可行流判断问题,首先题目给的图是一个强连通图,为了方便理解,我们假设这个图只有两个点,a,b,那么肯定也只有两条边,a->b ,b->a,那么我们可以直接建边a->b(下界 D 上界 B + D) b->a(下界 D 上界 B + D)这样跑一遍上下流之后如果存在可行流,那么就存在一个a,b之间的循环流(循环流的大小我们不用关心,我们只关心是否存在),那么就会有这样的结论,a->b的D(下限)一定小于等于b->a
的D+B(上限),同时 b->a的D(下限) 一定小于等于a->b的 D+B(上限),所以无论是a,还是b都可以充当S集合。so如果整个图中任意两个集合都这样就显然可以满足题意了。


#include<stdio.h>
#include<string.h>
#include<queue> #define N_node 220
#define N_edge 33000
#define INF 1000000000

using namespace
std; typedef struct
{
int
to ,next ,cost;
}
STAR; typedef struct
{
int
x ,t;
}
DEP; STAR E[N_edge];
DEP xin ,tou;
int
list[N_node] ,listt[N_node] ,tot;
int
deep[N_node] ,sum_must; void add(int a ,int b ,int c)
{

E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot; E[++tot].to = a;
E[tot].cost = 0;
E[tot].next = list[b];
list[b] = tot;
} void
ADD(int a ,int b ,int c ,int d ,int ss ,int tt)
{

add(a ,b ,d - c);
add(a ,tt ,c);
add(ss ,b ,c);
sum_must += c;
} int
minn(int x ,int y)
{
return
x < y ? x : y;
} bool
BFS_Deep(int s ,int t ,int n)
{

xin.x = s ,xin.t = 0;
queue<DEP>q;
q.push(xin);
memset(deep ,255 ,sizeof(deep));
deep[s] = 0;
while(!
q.empty())
{

tou = q.front();
q.pop();
for(int
k = list[tou.x] ;k ;k = E[k].next)
{

xin.x = E[k].to;
xin.t = tou.t + 1;
if(
deep[xin.x] != -1 || !E[k].cost)
continue;

deep[xin.x] = xin.t;
q.push(xin);
}
}
for(int
i = 0 ;i <= n ;i ++)
listt[i] = list[i];
return
deep[t] != -1;
} int
DFS_Flow(int s ,int t ,int flow)
{
if(
s == t) return flow;
int
nowflow = 0;
for(int
k = listt[s] ;k ;k = E[k].next)
{

listt[s] = k;
int
to = E[k].to;
int
c = E[k].cost;
if(
deep[to] != deep[s] + 1 || !c)
continue;
int
tmp = DFS_Flow(to ,t ,minn(c ,flow - nowflow));
nowflow += tmp;
E[k].cost -= tmp;
E[k^1].cost += tmp;
if(
nowflow == flow)
break;
}
if(!
nowflow) deep[s] = 0;
return
nowflow;
} int
DINIC(int s ,int t ,int n)
{
int
ans = 0;
while(
BFS_Deep(s ,t ,n))
{

ans += DFS_Flow(s ,t ,INF);
}
return
ans;
} int main ()
{
int
t ,n ,m ,i ,a ,b ,c ,d ,cas = 1;
scanf("%d" ,&t);
while(
t--)
{

scanf("%d %d" ,&n ,&m);
int
ss = 0 ,tt = n + 1;
memset(list ,0 ,sizeof(list));
tot = 1 ,sum_must = 0;
for(
i = 1 ;i <= m ;i ++)
{

scanf("%d %d %d %d" ,&a ,&b ,&c ,&d);
ADD(a ,b ,c ,c + d ,ss ,tt);
}

printf("Case #%d: " ,cas ++);
sum_must == DINIC(ss ,tt ,tt) ? puts("happy") : puts("unhappy");
}
return
0;
}

hdu4940 有上下界的无源可行流判断的更多相关文章

  1. ZOJ2314 Reactor Cooling(无源汇流量有上下界网络的可行流)

    题目大概说一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动. 本质上就是求一个无源汇流量有上下界的容量网络的可行流,因为无源汇的容 ...

  2. hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )

    题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...

  3. BZOJ 3876 支线剧情 有源汇有上下界最小费用可行流

    题意: 给定一张拓扑图,每条边有边权,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和 分析: 这道题乍一看,可能会想到什么最小链覆盖之类的,但是仔细一想,会发现不行,一是因 ...

  4. BZOJ 2055 80人环游世界 有上下界最小费用可行流

    题意: 现在有这么一个m人的团伙,也想来一次环游世界. 他们打算兵分多路,游遍每一个国家.    因为他们主要分布在东方,所以他们只朝西方进军.设从东方到西方的每一个国家的编号依次为1...N.假若第 ...

  5. zoj 3229 上下界网络最大可行流带输出方案

    收获: 1. 上下界网络流求最大流步骤: 1) 建出无环无汇的网络,并看是否存在可行流 2) 如果存在,那么以原来的源汇跑一次最大流 3) 流量下界加上当前网络每条边的流量就是最大可行流了. 2. 输 ...

  6. POJ2396 Budget(有源汇流量有上下界网络的可行流)

    题目大概给一个有n×m个单元的矩阵,各单元是一个非负整数,已知其每行每列所有单元的和,还有几个约束条件描述一些单元是大于小于还是等于某个数,问矩阵可以是怎样的. 经典的流量有上下界网络流问题. 把行. ...

  7. POJ 2396 Budget (上下界网络流有源可行流)

    转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...

  8. sgu 176 上下界网络流最小可行流带输出方案

    算法步骤: 1. 先将原图像最大可行流那样变换,唯一不同的是不加dst->src那条边来将它变成无源无汇的网络流图.直接跑一边超级源到超级汇的最大流. 2. 加上刚才没有加上的那条边p 3. 再 ...

  9. sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...

随机推荐

  1. POJ-2406(KMP+字符串压缩)

    Power String POJ-2406 字符串压缩模板题,但是是求有多少个这样最短的子串可以组成s. #include<iostream> #include<cstring> ...

  2. 前端学习 node 快速入门 系列 —— 初步认识 node

    其他章节请看: 前端学习 node 快速入门 系列 初步认识 node node 是什么 node(或者称node.js)是 javaScript(以下简称js) 运行时的一个环境.不是一门语言. 以 ...

  3. 使用wireshark 抓取 http https tcp ip 协议进行学习

    使用wireshark 抓取 http https tcp ip 协议进行学习 前言 本节使用wireshark工具抓包学习tcp ip http 协议 1. tcp 1.1 tcp三次握手在wire ...

  4. .NET 5下的Blazor是否可以大规模正式使用?

    今天在微信群讨论了很多Blazor是否可以正常用的问题.大家争的面红耳赤的. 于是趁着无聊,就水了这么一篇文. 还记得Blazor还在预览版的时候,我就开始关注Blazor了. 那会儿调试Blazor ...

  5. slickgrid ( nsunleo-slickgrid ) 4 解决点击不切换单元格的问题

    slickgrid ( nsunleo-slickgrid ) 4 解决点击不切换单元格的问题 上一次解决了列选择和区域选择冲突的问题,昨天太忙了,并且要陪小宝早点睡觉,就啥也没有赶上.今天上班面试. ...

  6. C# 通过ServiceStack 操作Redis——String类型的使用及示例

    1.引用Nuget包 ServiceStack.Redis 我这里就用别人已经封装好的Reids操作类,来演示,并附上一些说明 RedisConfigInfo--redis配置文件信息 /// < ...

  7. wireshark如何抓取分析https的加密报文

    [问题概述] https流量基于ssl/tls加密,无法直接对报文进行分析. [解决方案] 方案1 -- 利用"中间人攻击"的代理方式抓包分析.整个方案过程比较简单,这里不赘述,大 ...

  8. python基础学习之集合set

    .集合:set 特点:无序,不可重复(自动去重),可更改,可以与元组.列表互相转换 格式:s = {'x','y','z'} 转换:(转回用set) s = {'x','y','z'}        ...

  9. Salesforce LWC学习(三十二)实现上传 Excel解析其内容

    本篇参考:salesforce lightning零基础学习(十七) 实现上传 Excel解析其内容 上一篇我们写了aura方式上传excel解析其内容.lwc作为salesforce的新宠儿,逐渐的 ...

  10. (三)SpringBoot启动过程的分析-创建应用程序上下文

    -- 以下内容均基于2.1.8.RELEASE版本 紧接着上一篇(二)SpringBoot启动过程的分析-环境信息准备,本文将分析环境准备完毕之后的下一步操作:ApplicationContext的创 ...