UVA10870递推关系(矩阵乘法)
题意:
给以个递推f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.,给你n,d,a1,a2..ad ,f[1],f[2]..f[d],让你求f[n]%m.
思路:
比较基础的矩阵题目,每次都构造一个d*d的矩阵,然后用快速幂求出来它的n-1次幂,然后在求出乘积就行了,简单构造,没有什么坑点。
#include<stdio.h>
#include<string.h>
typedef struct
{
long long Mat[16][16];
}MAT;
long long n ,MOD ,d;
MAT mm(MAT a ,MAT b)
{
MAT c;
memset(c.Mat ,0 ,sizeof(c.Mat));
for(int i = 1 ;i <= d ;i ++)
for(int j = 1 ;j <= d ;j ++)
for(int k = 1 ;k <= d ;k ++)
c.Mat[i][j] = (c.Mat[i][j] + a.Mat[i][k] * b.Mat[k][j])%MOD;
return c;
}
MAT Quick(MAT a ,long long b)
{
MAT c;
memset(c.Mat ,0 ,sizeof(c.Mat));
for(int i = 1 ;i <= d ;i ++)
c.Mat[i][i] = 1;
while(b)
{
if(b&1) c = mm(c ,a);
a = mm(a ,a);
b>>=1;
}
return c;
}
int main ()
{
long long D[16] ,F[16] ,i;
MAT A;
while(~scanf("%lld %lld %lld" ,&d ,&n ,&MOD) && d + n + MOD)
{
for(i = 1 ;i <= d ;i ++)
{
scanf("%lld" ,&D[i]);
D[i] %= MOD;
}
for(i = 1 ;i <= d ;i ++)
{
scanf("%lld" ,&F[i]);
F[i] %= MOD;
}
if(n <= d)
{
printf("%lld\n" ,F[n]);
continue;
}
memset(A.Mat ,0 ,sizeof(A.Mat));
int x = 2 ,y = 1;
for(i = 2 ;i <= d ;i ++)
{
A.Mat[x][y] = 1;
x ++ ,y ++;
}
for(i = 1 ;i <= d ;i ++)
A.Mat[i][d] = D[d-i+1];
A = Quick(A ,n - 1);
long long Ans = 0;
for(i = 1 ;i <= d ;i ++)
{
Ans += F[i] * A.Mat[i][1];
Ans %= MOD;
}
printf("%lld\n" ,Ans);
}
return 0;
}
UVA10870递推关系(矩阵乘法)的更多相关文章
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
- 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67
本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...
- 【转】Matrix67:十个利用矩阵乘法解决的经典题目
好像目前还没有这方面题目的总结.这几天连续看到四个问这类题目的人,今天在这里简单写一下.这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质. 不要以为数学中的矩阵也是黑色屏幕上不断变化的 ...
- CF781D Axel and Marston in Bitland [倍增 矩阵乘法 bitset]
Axel and Marston in Bitland 好开心第一次补$F$题虽然是$Div.2$ 题意: 一个有向图,每条边是$0$或$1$,要求按如下规则构造一个序列然后走: 第一个是$0$,每次 ...
- 矩阵乘法code
VOJ1067 我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0.例如 ...
- POJ3070 Fibonacci[矩阵乘法]【学习笔记】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
- [矩阵乘法]裴波拉契数列III
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...
- [矩阵乘法]裴波拉契数列II
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- 修改 Hosts 解决 Github 访问缓慢问题
背景 最近访问 Github 经常出现访问速度慢的问题,甚至会出现无法连接的情况.有一天,在一次家常聊天中提到了这个事情,有一位热心的 Gitee 朋友就说:你改一下 Hosts 文件就可以了.修改了 ...
- C# 基础 - Enum 的一些操作
1. int 转换成 enum public enum Suit { Spades, Hearts, Clubs, Diamonds } Suit spades = (Suit)0; Suit hea ...
- beego 框架用的页面样式模板
https://themequarry.com/category/free 页面样式
- 利用eigen库简单实现矩阵功能
eigen是目前运行速度较快的C++矩阵运算库,而且其轻便小巧安装方便的特点简直是吸引人啊!特做此笔记,记录一下这个安装简单.体积轻巧.功能强大的C++库. 1. Download and Insta ...
- linux中c语言编程main函数和参数
linux下main函数的的标准调用函数的标准形式 int main(int char,char *argv[]) 在main函数的两个参数中,argc必须是整型变量,其是命令行的参数的数目,argv ...
- x64dbg 条件断点相关文档
输入 字符格式 条件断点 Input When using x64dbg you can often use various things as input. Commands Commands ha ...
- python3 虚拟环境 venv
创建一个虚拟环境: python -m venv test (test 为创建的虚拟环境目录) 激活虚拟环境: test\Scripts\activate ...
- sqli-labs系列——第一关
先看了一遍关于sql的一些知识点,通关sqli-labs加深下印象.之前也因为作业的原因通关过前10关,但那时候不懂得原理,跟着网上的教程做的,所以这次尝试自己思考通关. less1 尝试and1=2 ...
- vue-cli2 生成的项目打包优化(持续学习中)
1.昨天看到自己的项目每次打包后都是30M左右,就觉得这个打包后的dist文件太大了,能不能小点呢, 然后就看网上的资料,提供了好多优化的办法,但是我只用了一个,后期再不断的优化吧. 打开工程项目文件 ...
- js 一数组分割成若干个数组,并装换成字符串赋个li标签
success: function (datas) { //请求成功后处理函数. var htmltext = ''; var data = datas.result; console.log(dat ...