正题

题目链接:https://www.luogu.com.cn/problem/P3507


题目大意

\(n\)个数字的一个序列\(a\),对于每个位置\(i\)求一个\(p_i\)使得对于任意\(j\)满足

\[p_i+a_i-\sqrt{|i-j|}\geq p_j
\]

解题思路

化简一下发现我们是需要求出\(max\{\sqrt{|i-j|}+p_j\}\)

分成两次去掉绝对值。

因为这个根号的性质是增长的越来越小,那么对于一个位置\(i\)若它的\(max\)值位置为\(j\),那么\(i+1\)就一定不小于\(j\)。

利用这个单调性来优化,我们每次直接对于区间正中间\(mid\)暴力求出它的答案\(pos\),那么\([l,mid-1]\)的答案就在\([L,pos]\),而\([mid+1,r]\)的答案就在\([pos,R]\)。

然后递归下去就好了。时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
#define ll long long
using namespace std;
const ll N=5e5+10;
ll n;double a[N],f[N],sqr[N];
stack<ll> s;
double count(ll i,ll j)
{return a[j]+sqr[abs(j-i)];}
void CDQ(ll l,ll r,ll L,ll R){
if(l>r)return;
ll mid=(l+r)>>1,pos=L;
double tmp=count(mid,L);
for(int i=L+1;i<=R&&i<=mid;i++)
if(count(mid,i)>tmp)
pos=i,tmp=count(mid,i);
f[mid]=max(tmp,f[mid]);
CDQ(l,mid-1,L,pos);CDQ(mid+1,r,pos,R);
return;
}
signed main()
{
scanf("%lld",&n);
for(ll i=1;i<=n;i++){
scanf("%lf",&a[n-i+1]);
sqr[i]=sqrt((double)i);
}
CDQ(1,n,1,n);
for(ll i=1;n-i+1>i;i++)
swap(a[i],a[n-i+1]),swap(f[i],f[n-i+1]);
CDQ(1,n,1,n);
for(ll i=1;i<=n;i++)
printf("%lld\n",(ll)ceil(f[i]-a[i]));
return 0;
}

P3515-[POI2011]Lightning Conductor【整体二分,决策单调性】的更多相关文章

  1. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  2. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  3. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  4. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  5. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  6. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

  7. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  8. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  9. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

随机推荐

  1. 获取sim 卡的IMEI 和 IMSI

    IReadOnlyList<string> networkAccIds = Windows.Networking.NetworkOperators.MobileBroadbandAccou ...

  2. .Net Core 踩坑记录--程序独立发布 无法运行

    背景 创建.net Core3.1 的Console程序 点击发布 选择独立部署模式 目标电脑 Win10 x64 未安装任何.Net SDK 现象 发布的程序 点击运行没有反应 或是直接闪退 解决 ...

  3. java 文件上传(图片上传)

    1.FTP工具类 代码如下: package com.taotao.common.utils; import java.io.File; import java.io.FileInputStream; ...

  4. 【转】SpringCloud学习

    Spring Cloud Alibaba与Spring Boot.Spring Cloud之间不得不说的版本关系   这篇博文是临时增加出来的内容,主要是由于最近连载<Spring Cloud ...

  5. python某个module使用了相对引用,同时其__name__又是__main__导致的错误

    主要讲解 某个module中使用了相对引用,同时这个module的 __name__ 属性 又是 __main__ 会报错的问题 1.问题复现 文件结构很简单: |--------package | ...

  6. 我对数据库事务的理解(MYSQL中)

    -- 设置数据库事务为手动的提交SET @@AUTOCOMMIT = 0;-- 查看是否被修改SELECT @@autocommit;-- 查看当前的编码格式SELECT @@character_se ...

  7. docker安装与配置gitlab详细过程

    docker安装与配置gitlab详细过程 1.打开网易镜像中心 https://c.163yun.com/hub#/m/home/ 2.搜索gitlab,获取下载地址.例如:docker pull  ...

  8. CentOS7中apache的部署与配置

    一.apache的部署 输入命令 yum list | grep httpd 查看可安装的软件包,选择"httpd.x86_64"安装. 输入命令 yum install http ...

  9. MAC下Jetbrains编译器无法打开问题解决

    这段时间不知道怎么回事,每次打开Rider必定闪退,毫无头绪,只好暂时放弃使用Rider,试用了一段时间Visual Studio. 可惜...虽然大学时候觉得VS天下第一,但是用惯了JB的编译器,再 ...

  10. 面试必问题:JS防抖与节流

    摘要:防抖与节流可谓是面试常见,其实很好理解,下面带你分分钟了解防抖与节流的基本思想与写法~ 本文分享自华为云社区<JS防抖与节流快速了解与应用>,作者:北极光之夜. . 一.速识防抖: ...