正题

题目链接:https://www.luogu.com.cn/problem/P3507


题目大意

\(n\)个数字的一个序列\(a\),对于每个位置\(i\)求一个\(p_i\)使得对于任意\(j\)满足

\[p_i+a_i-\sqrt{|i-j|}\geq p_j
\]

解题思路

化简一下发现我们是需要求出\(max\{\sqrt{|i-j|}+p_j\}\)

分成两次去掉绝对值。

因为这个根号的性质是增长的越来越小,那么对于一个位置\(i\)若它的\(max\)值位置为\(j\),那么\(i+1\)就一定不小于\(j\)。

利用这个单调性来优化,我们每次直接对于区间正中间\(mid\)暴力求出它的答案\(pos\),那么\([l,mid-1]\)的答案就在\([L,pos]\),而\([mid+1,r]\)的答案就在\([pos,R]\)。

然后递归下去就好了。时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
#define ll long long
using namespace std;
const ll N=5e5+10;
ll n;double a[N],f[N],sqr[N];
stack<ll> s;
double count(ll i,ll j)
{return a[j]+sqr[abs(j-i)];}
void CDQ(ll l,ll r,ll L,ll R){
if(l>r)return;
ll mid=(l+r)>>1,pos=L;
double tmp=count(mid,L);
for(int i=L+1;i<=R&&i<=mid;i++)
if(count(mid,i)>tmp)
pos=i,tmp=count(mid,i);
f[mid]=max(tmp,f[mid]);
CDQ(l,mid-1,L,pos);CDQ(mid+1,r,pos,R);
return;
}
signed main()
{
scanf("%lld",&n);
for(ll i=1;i<=n;i++){
scanf("%lf",&a[n-i+1]);
sqr[i]=sqrt((double)i);
}
CDQ(1,n,1,n);
for(ll i=1;n-i+1>i;i++)
swap(a[i],a[n-i+1]),swap(f[i],f[n-i+1]);
CDQ(1,n,1,n);
for(ll i=1;i<=n;i++)
printf("%lld\n",(ll)ceil(f[i]-a[i]));
return 0;
}

P3515-[POI2011]Lightning Conductor【整体二分,决策单调性】的更多相关文章

  1. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  2. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  3. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  4. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  5. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  6. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

  7. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  8. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  9. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

随机推荐

  1. 什么是挂载,Linux挂载详解

    前面讲过,Linux 系统中"一切皆文件",所有文件都放置在以根目录为树根的树形目录结构中.在 Linux 看来,任何硬件设备也都是文件,它们各有自己的一套文件系统(文件目录结构) ...

  2. ArcGIS地形分析--TIN及DEM的生成,TIN的显示

    DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法.途径,它的应用可遍及整个地学领域.通过对本次实习的学习,我们应加深对TIN建立过程的原理.方法的认识:熟练掌握ArcGI ...

  3. Web安全-信息收集

    信息收集 前言:在渗透测试过程中,信息收集是非常重要的一个环节,此环节的信息将影响到后续成功几率,掌握信息的多少将决定发现漏洞的机会的大小,换言之决定着是否能完成目标的测试任务.也就是说:渗透测试的思 ...

  4. js调试之firbug

    说下几种方法吧: 1.用alert 这个最最直观 把你想要的内容弹出来给你看,但是要看哪里 就要在哪里加,比较麻烦 2.用firefox 或者chrome浏览器 里面有debug工具的 3.如果想用i ...

  5. 程序挂了之后别再跟我说让我帮你重启啦! 让supervisor帮你搞定...

    目录 有啥用? 安装 生成配置文件 启动supervisor 自定义配置文件 控制命令 求关注啦 有啥用? 很多我们项目排期进入联调.测试阶段,如果QA同学是直接跟你要一个后端环境的话,那简单点大概率 ...

  6. 你的 JVM 基础“大厦”稳健吗?

    [从 1 开始学 JVM 系列] JVM 对于每位 Java 语言编程者来说无疑是"重中之重",尽管我们每天都在与它打交道,却很少来审视它.了解它,慢慢地,它成为了我们" ...

  7. java基础之ThreadLocal

    早在JDK 1.2的版本中就提供java.lang.ThreadLocal,ThreadLocal为解决多线程程序的并发问题提供了一种新的思路.使用这个工具类可以很简洁地编写出优美的多线程程序.Thr ...

  8. [源码解析] 深度学习流水线并行 PipeDream(4)--- 运行时引擎

    [源码解析] 深度学习流水线并行 PipeDream(4)--- 运行时引擎 目录 [源码解析] 深度学习流水线并行 PipeDream(4)--- 运行时引擎 0x00 摘要 0x01 前言 1.1 ...

  9. Flask(6)- debug 模式

    使用 Flask 开发过程中存在两个常见的问题 当 Flask 程序出错时,没有提示错误的详细信息 修改 Flask 源代码后需要重启 Flask 程序 这两个问题非常的影响开发效率,因此 Flask ...

  10. TypeScript 中命名空间与模块的理解?区别?

    一.模块 TypeScript 与ECMAScript 2015 一样,任何包含顶级 import 或者 export 的文件都被当成一个模块 相反地,如果一个文件不带有顶级的import或者expo ...