P6657-[模板]LGV 引理
正题
题目链接:https://www.luogu.com.cn/problem/P6657
题目大意
给出$n\times n$的棋盘,$m$个起点第$i$个为$(1,a_i)$,对应$m$个终点第$i$个为$(n,b_i)$。
求有多少条选出$m$条四联通路径的方案使得没有路径有交点。
\(2\leq n\leq 10^6,1\leq m\leq 100,1\leq T\leq 5\)
解题思路
既然是引理我直接上证明了,设矩阵$A$中$A_{x,y}$为第$x$个起点走到第$y$个起点的所有路径权值乘积和(这题里面为$1$)。
然后答案就是(所有方案的路径权值乘积)这个矩阵的行列式。
具体证明是容斥但是我不会。
时间复杂度$O(n+Tm^3)$
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e6+10,P=998244353;
ll T,n,m,fac[N],inv[N],b[110],c[110],a[110][110];
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll Path(ll x,ll y){
if(b[x]>c[y])return 0;
return C(c[y]-b[x]+n-1,n-1);
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll dec(ll n){
ll ans=1,f=1;
for(ll i=1;i<=n;i++){
for(ll j=i;j<=n;j++){
if(a[j][i]){
if(j!=i)swap(a[i],a[j]),f=-f;
break;
}
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<=n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
}
}
return ans;
}
signed main()
{
scanf("%lld",&T);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
fac[0]=inv[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
while(T--){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++)
scanf("%lld%lld",&b[i],&c[i]);
for(ll i=1;i<=m;i++)
for(ll j=1;j<=m;j++)a[i][j]=Path(i,j);
printf("%lld\n",dec(m));
}
return 0;
}
P6657-[模板]LGV 引理的更多相关文章
- LGV 引理小记
讲个笑话,NOI 之前某场模拟赛让我知道了这个神奇的科技,于是准备 NOI 之前学完,结果鸽着鸽着就鸽掉了,考 day1 之前一天本来准备花一天时间学的,然后我就开玩笑般地跟自己说,这么 trivia ...
- LGV 引理
(其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...
- 2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11260/C 题目大意 一个平面上,\(n\)个起点\((0,a_i)\)分别对应终点\((i,0)\),每次 ...
- P7736-[NOI2021]路径交点【LGV引理】
正题 题目链接:https://www.luogu.com.cn/problem/P7736 题目大意 有\(k\)层的图,第\(i\)层有\(n_i\)个点,每层的点从上到下排列,层从左到右排列.再 ...
- LGV 引理——二维DAG上 n 点对不相交路径方案数
文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...
- ACM模板_axiomofchoice
目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...
- 模板库 ~ Template library
TOC 建议使用 Ctrl+F 搜索 . 目录 小工具 / C++ Tricks NOI Linux 1.0 快速读入 / 快速输出 简易小工具 无序映射器 简易调试器 文件 IO 位运算 Smart ...
- NOI2021游记
NOI2021游记 前言 写于 2021.7.28,成绩榜刚出后几个小时.总分 345 拿到银牌 183 名. 我的高中 OI 生活在这里画上句号.结局对我而言虽然不够完美,但是无论怎样都是我人生道路 ...
- NOI2021 去不了记
没错,由于某些 zszz 的原因,我是真的去不了了(指去不了 ZJ) Day -11 ~ -7 - 2021.7.12 - 2021.7.16 令人自闭的 ISIJ 终于结束了----From ycx ...
随机推荐
- Angular Module 共享模块使用 父模块使用多个子模块
Component.module.ts import {BrowserModule} from '@angular/platform-browser'; import {LocationStrat ...
- spring-cloud-sleuth+zipkin追踪服务
1, 父Maven pom 文件 <parent> <groupId>org.springframework.boot</groupId> <artifact ...
- COM笔记-关于HRESULT
HRESULT HRESULT(Here's the RESULT)值分成32位值, HRESULT值中16到30这15个比特位包含的是设备代码.设备代码标识的是可以返回HRESULT返回代码的操作系 ...
- wpf 滚动文字 跑马灯
有时候也会有用,比如我的软件界面 放不下全长的文字时.或者状态栏显示一些时间,地点,温度,湿度等等这些东西 代码链接 https://gitee.com/csszbb/wpfnet5 这属于WPF ...
- C#基础知识---获取调用者信息
一.概述 C#5.0提供了一种新功能,可以利用特性和可选参数获得调用者的信息.这些特性信息包括CallerLineNumber.CallerFilePath和CallerMemberName. 二.D ...
- AAC简介
AAC共有9种规格,以适应不同的场合的需要: MPEG-2 AAC LC 低复杂度规格(Low Complexity)--比较简单,没有增益控制,但提高了编码效率,在中等码率的编码效率以及音质方面,都 ...
- 如果服务器数据更新了,CDN的数据是怎么及时更新的
A:cdn一般用来存静态资源.拿网站来说,当用户访问网站时静态资源从cdn加载.cdn向后段源服务器请求资源并缓存,这个请求过程是周期性的,自动的,称为回源. 当你更新了一个文件,现在正巧还没到cdn ...
- n, n+1, ..., 2n 中的 5 数环初探
本篇是 IMO 2021 第一题题解及相关拓展问题分析 和 IMO 2021 第 1 题拓展问题的两个极值的编程求解 的延伸篇. 从上两篇的分析,可知: 当 n < 48 时,n, n+1, . ...
- netty系列之:搭建自己的下载文件服务器
目录 简介 文件的content-type 客户端缓存文件 其他HTTP中常用的处理 文件内容展示处理 文件传输进度 总结 简介 上一篇文章我们学习了如何在netty中搭建一个HTTP服务器,讨论了如 ...
- Spring笔记(2)
一.AOP简介 1.概念: 面向切面编程(Aspect-Oriented Programming),可以说是OOP(Object-Oriented Programing,面向对象编程)的补充和完善. ...