正题

题目链接:https://www.luogu.com.cn/problem/P6657


题目大意

给出$n\times n$的棋盘,$m$个起点第$i$个为$(1,a_i)$,对应$m$个终点第$i$个为$(n,b_i)$。

求有多少条选出$m$条四联通路径的方案使得没有路径有交点。

\(2\leq n\leq 10^6,1\leq m\leq 100,1\leq T\leq 5\)


解题思路

既然是引理我直接上证明了,设矩阵$A$中$A_{x,y}$为第$x$个起点走到第$y$个起点的所有路径权值乘积和(这题里面为$1$)。

然后答案就是(所有方案的路径权值乘积)这个矩阵的行列式。

具体证明是容斥但是我不会。

时间复杂度$O(n+Tm^3)$


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e6+10,P=998244353;
ll T,n,m,fac[N],inv[N],b[110],c[110],a[110][110];
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll Path(ll x,ll y){
if(b[x]>c[y])return 0;
return C(c[y]-b[x]+n-1,n-1);
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll dec(ll n){
ll ans=1,f=1;
for(ll i=1;i<=n;i++){
for(ll j=i;j<=n;j++){
if(a[j][i]){
if(j!=i)swap(a[i],a[j]),f=-f;
break;
}
}
ans=ans*a[i][i]%P;
ll inv=power(a[i][i],P-2);
for(ll j=i;j<=n;j++)a[i][j]=a[i][j]*inv%P;
for(ll j=i+1;j<=n;j++){
ll rate=P-a[j][i];
for(ll k=i;k<=n;k++)
(a[j][k]+=rate*a[i][k]%P)%=P;
}
}
return ans;
}
signed main()
{
scanf("%lld",&T);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
fac[0]=inv[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
while(T--){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++)
scanf("%lld%lld",&b[i],&c[i]);
for(ll i=1;i<=m;i++)
for(ll j=1;j<=m;j++)a[i][j]=Path(i,j);
printf("%lld\n",dec(m));
}
return 0;
}

P6657-[模板]LGV 引理的更多相关文章

  1. LGV 引理小记

    讲个笑话,NOI 之前某场模拟赛让我知道了这个神奇的科技,于是准备 NOI 之前学完,结果鸽着鸽着就鸽掉了,考 day1 之前一天本来准备花一天时间学的,然后我就开玩笑般地跟自己说,这么 trivia ...

  2. LGV 引理

    (其实是贺的:https://www.luogu.com.cn/paste/whl2joo4) 目录 LGV 引理 不相交路径计数 例题 Luogu6657. [模板]LGV 引理 CF348D Tu ...

  3. 2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】

    正题 题目链接:https://ac.nowcoder.com/acm/contest/11260/C 题目大意 一个平面上,\(n\)个起点\((0,a_i)\)分别对应终点\((i,0)\),每次 ...

  4. P7736-[NOI2021]路径交点【LGV引理】

    正题 题目链接:https://www.luogu.com.cn/problem/P7736 题目大意 有\(k\)层的图,第\(i\)层有\(n_i\)个点,每层的点从上到下排列,层从左到右排列.再 ...

  5. LGV 引理——二维DAG上 n 点对不相交路径方案数

    文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...

  6. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...

  7. 模板库 ~ Template library

    TOC 建议使用 Ctrl+F 搜索 . 目录 小工具 / C++ Tricks NOI Linux 1.0 快速读入 / 快速输出 简易小工具 无序映射器 简易调试器 文件 IO 位运算 Smart ...

  8. NOI2021游记

    NOI2021游记 前言 写于 2021.7.28,成绩榜刚出后几个小时.总分 345 拿到银牌 183 名. 我的高中 OI 生活在这里画上句号.结局对我而言虽然不够完美,但是无论怎样都是我人生道路 ...

  9. NOI2021 去不了记

    没错,由于某些 zszz 的原因,我是真的去不了了(指去不了 ZJ) Day -11 ~ -7 - 2021.7.12 - 2021.7.16 令人自闭的 ISIJ 终于结束了----From ycx ...

随机推荐

  1. VSCode Navigate Back/Forward

    Navigate Back: In the menu bar Choose [Go] -> [Back] (Ctrl+Alt+-) Navigate Forward: In the menu b ...

  2. Elasticsearch集群搭建教程及生产环境配置

    Elasticsearch 是一个极其强大的搜索和分析引擎,其强大的部分在于能够对其进行扩展以获得更好的性能和稳定性. 本教程将提供有关如何设置 Elasticsearch 集群的一些信息,并将添加一 ...

  3. Linux centos7 -bash: pstree: 未找到命令

    2021-08-12 1. 命令简介pstree命令将所有行程以树状图显示,树状图将会以 pid (如果有指定) 或是以 init 这个基本行程为根 (root),如果有指定使用者 id,则树状图会只 ...

  4. git,github,webstrom配置

    在使用 WebStorm 上传本地项目到 GitHub 之前,先要做一些相关配置. 首先打开 WebStorm ,依次点击File -> Settings... 打开系统设置面板,在上面搜索 g ...

  5. MySQL主主互备不同步的解决方法

    MySQL主主互备不同步 首先在服务器上执行show slave satus;可以看到很多同步的参数: Master_Log_File: SLAVE中的I/O线程当前正在读取的主服务器二进制日志文件的 ...

  6. rsync 服务搭建

    rsync 服务搭建 服务端部署操作内容: 创建rsync用户和用户组 eg: useradd -s /sbin/nologin -M rsync 创建需要备份的指定目录,并修改权限 eg: mkdi ...

  7. Spring系列之Mybatis动态代理实现全过程?回答正确率不到1%

    面试中,可能会问到Spring怎么绑定Mapper接口和SQL语句的.一般的答案是Spring会为Mapper生成一个代理类,调用的时候实际调用的是代理类的实现.但是如果被追问代理类实现的细节,很多同 ...

  8. java基础之反射类型Type

    Java在加入泛型之后,仅仅Class已经不足以描述数据的类型了,比如List<String>类型的数据,其Class的类型为List.class,但是其类型包含了泛型参数,所以java引 ...

  9. 20210712 noip12

    考场 第一次和 hzoi 联考,成功给 sdfz 丢人 尝试戴耳罩,发现太紧了... 决定改变策略,先用1h看题,想完3题再写. T1 一下想到枚举最大值,单调栈求出每个点能作为最大值的区间,然后以这 ...

  10. SNMP协议之序言

    最近两周公司分配一个任务:使用snmp协议做一个网管,来配置我们的产品.这可以说是我第一次听说这个协议,我问了一下周围的同事这是个什么协议,同事说"简单网络管理协议",其实这个协议 ...